J2ME CLDC API
1.0
Package Summary

<table>
<thead>
<tr>
<th>CLDC API packages</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>java.io</td>
<td>Provides for system input and output through data streams.</td>
</tr>
<tr>
<td>java.lang</td>
<td>Provides classes that are fundamental to the design of the Java programming language.</td>
</tr>
<tr>
<td>java.util</td>
<td>Contains the collections framework, legacy collection classes, date and time facilities and miscellaneous utility classes.</td>
</tr>
<tr>
<td>javax.microedition.io</td>
<td>The classes for the generic connections.</td>
</tr>
</tbody>
</table>
java.io Package

Description

Provides for system input and output through data streams.

Since: JDK 1.0

Class Summary

<table>
<thead>
<tr>
<th>Interfaces</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataInput</td>
<td>The DataInput interface provides for reading bytes from a binary stream and reconstructing from them data in any of the Java primitive types.</td>
</tr>
<tr>
<td>DataOutput</td>
<td>The DataOutput interface provides for converting data from any of the Java primitive types to a series of bytes and writing these bytes to a binary stream.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ByteArrayInputStream</td>
<td>A ByteArrayInputStream contains an internal buffer that contains bytes that may be read from the stream.</td>
</tr>
<tr>
<td>ByteArrayOutputStream</td>
<td>This class implements an output stream in which the data is written into a byte array.</td>
</tr>
<tr>
<td>DataInputStream</td>
<td>A data input stream lets an application read primitive Java data types from an underlying input stream in a machine-independent way.</td>
</tr>
<tr>
<td>DataOutputStream</td>
<td>A data input stream lets an application write primitive Java data types to an output stream in a portable way.</td>
</tr>
<tr>
<td>InputStream</td>
<td>This abstract class is the superclass of all classes representing an input stream of bytes.</td>
</tr>
<tr>
<td>InputStreamReader</td>
<td>An InputStreamReader is a bridge from byte streams to character streams: It reads bytes and translates them into characters.</td>
</tr>
<tr>
<td>OutputStream</td>
<td>This abstract class is the superclass of all classes representing an output stream of bytes.</td>
</tr>
<tr>
<td>OutputStreamWriter</td>
<td>An OutputStreamWriter is a bridge from character streams to byte streams: Characters written to it are translated into bytes.</td>
</tr>
<tr>
<td>PrintStream</td>
<td>A PrintStream adds functionality to another output stream, namely the ability to print representations of various data values conveniently.</td>
</tr>
<tr>
<td>Reader</td>
<td>Abstract class for reading character streams.</td>
</tr>
<tr>
<td>Writer</td>
<td>Abstract class for writing to character streams.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exceptions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOFException</td>
<td>Signals that an end of file or end of stream has been reached unexpectedly during input.</td>
</tr>
<tr>
<td>InterruptedIOException</td>
<td>Signals that an I/O operation has been interrupted.</td>
</tr>
<tr>
<td>IOException</td>
<td>Signals that an I/O exception of some sort has occurred.</td>
</tr>
<tr>
<td>UnsupportedEncodingException</td>
<td>The Character Encoding is not supported.</td>
</tr>
</tbody>
</table>
Class Summary

<table>
<thead>
<tr>
<th>Class Summary</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTFDataFormatException</td>
<td>Signals that a malformed UTF-8 string has been read in a data input stream or by any class that implements the data input interface.</td>
</tr>
</tbody>
</table>
java.io ByteArrayInputStream

Syntax
public class ByteArrayInputStream extends InputStream

Description
A ByteArrayInputStream contains an internal buffer that contains bytes that may be read from the stream. An internal counter keeps track of the next byte to be supplied by the read method.

Since: JDK1.0

Member Summary

<table>
<thead>
<tr>
<th>Fields</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>buf</td>
<td>An array of bytes that was provided by the creator of the stream.</td>
</tr>
<tr>
<td>count</td>
<td>The index one greater than the last valid character in the input stream buffer.</td>
</tr>
<tr>
<td>mark</td>
<td>The currently marked position in the stream.</td>
</tr>
<tr>
<td>pos</td>
<td>The index of the next character to read from the input stream buffer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constructors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ByteArrayInputStream(byte[])</td>
<td>Creates a ByteArrayInputStream so that it uses buf as its buffer array.</td>
</tr>
<tr>
<td>ByteArrayInputStream(byte[], int, int)</td>
<td>Creates ByteArrayInputStream that uses buf as its buffer array.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>available()</td>
<td>Returns the number of bytes that can be read from this input stream without blocking.</td>
</tr>
<tr>
<td>close()</td>
<td>Closes this input stream and releases any system resources associated with the stream.</td>
</tr>
<tr>
<td>mark(int)</td>
<td>Set the current marked position in the stream.</td>
</tr>
<tr>
<td>markSupported()</td>
<td>Tests if ByteArrayInputStream supports mark/reset.</td>
</tr>
<tr>
<td>read()</td>
<td>Reads the next byte of data from this input stream.</td>
</tr>
<tr>
<td>read(byte[], int, int)</td>
<td>Reads up to len bytes of data into an array of bytes from this input stream.</td>
</tr>
<tr>
<td>reset()</td>
<td>Resets the buffer to the marked position.</td>
</tr>
<tr>
<td>skip(long)</td>
<td>Skips n bytes of input from this input stream.</td>
</tr>
</tbody>
</table>

Inherited Member Summary

Methods inherited from class InputStream
Inherited Member Summary

read(byte[])

Methods inherited from class **java.io.**

`getClass()`, `hashCode()`, `equals(Object)`, `toString()`, `notify()`, `notifyAll()`,
`wait(long)`, `wait(long, int)`, `wait()`

Fields

`buf`

```java
protected byte[] buf

An array of bytes that was provided by the creator of the stream. Elements `buf[0]` through `buf[count-1]` are the only bytes that can ever be read from the stream; element `buf[pos]` is the next byte to be read.
```

`count`

```java
protected int count

The index one greater than the last valid character in the input stream buffer. This value should always be nonnegative and not larger than the length of `buf`. It is one greater than the position of the last byte within `buf` that can ever be read from the input stream buffer.
```

`mark`

```java
protected int mark

The currently marked position in the stream. ByteArrayInputStream objects are marked at position zero by default when constructed. They may be marked at another position within the buffer by the `mark()` method. The current buffer position is set to this point by the `reset()` method.

Since: JDK1.1
```

`pos`

```java
protected int pos

The index of the next character to read from the input stream buffer. This value should always be nonnegative and not larger than the value of `count`. The next byte to be read from the input stream buffer will be `buf[pos]`.
```

Constructors

`ByteArrayInputStream(byte[])`
ByteArrayInputStream(byte[], int, int)

public ByteArrayInputStream(byte[] buf, int offset, int length)

Creates ByteArrayInputStream that uses buf as its buffer array. The initial value of pos is offset and the initial value of count is offset+len. The buffer array is not copied.

Note that if bytes are simply read from the resulting input stream, elements buf[pos] through buf[pos+len-1] will be read; however, if a reset operation is performed, then bytes buf[0] through buf[pos-1] will then become available for input.

Parameters:
buf - the input buffer.
offset - the offset in the buffer of the first byte to read.
length - the maximum number of bytes to read from the buffer.

Methods

available()

public synchronized int available()

Returns the number of bytes that can be read from this input stream without blocking. The value returned is count - pos, which is the number of bytes remaining to be read from the input buffer.

Overrides: available() in class InputStream

Returns: the number of bytes that can be read from the input stream without blocking.

close()

public synchronized void close()

Closes this input stream and releases any system resources associated with the stream.

Overrides: close() in class InputStream

Throws: IOException

mark(int)

public void mark(int readAheadLimit)

Set the current marked position in the stream. ByteArrayInputStream objects are marked at position zero by default when constructed. They may be marked at another position within the buffer by this method.
ByteArrayInputStream overrides markSupported().

markSupported()

```java
public boolean markSupported()
```
Tests if ByteArrayInputStream supports mark/reset.

Overrides: markSupported() in class InputStream

Since: JDK1.1

read()

```java
public synchronized int read()
```
Reads the next byte of data from this input stream. The value byte is returned as an int in the range 0 to 255. If no byte is available because the end of the stream has been reached, the value -1 is returned.

This read method cannot block.

Overrides: read() in class InputStream

Returns: the next byte of data, or -1 if the end of the stream has been reached.

read(byte[], int, int)

```java
public synchronized int read(byte[] b, int off, int len)
```
Reads up to len bytes of data into an array of bytes from this input stream. If pos equals count, then -1 is returned to indicate end of file. Otherwise, the number k of bytes read is equal to the smaller of len and count-pos. If k is positive, then bytes buf[pos] through buf[pos+k-1] are copied into b[off] through b[off+k-1] in the manner performed by System.arraycopy. The value k is added into pos and k is returned.

This read method cannot block.

Overrides: read(byte[], int, int) in class InputStream

Parameters:
- `b` - the buffer into which the data is read.
- `off` - the start offset of the data.
- `len` - the maximum number of bytes read.

Returns: the total number of bytes read into the buffer, or -1 if there is no more data because the end of the stream has been reached.

reset()

```java
public synchronized void reset()
```
Resets the buffer to the marked position. The marked position is the beginning unless another position was marked. The value of pos is set to 0.

Overrides: reset() in class InputStream
skip(long)

public synchronized long skip(long n)

Skips \(n \) bytes of input from this input stream. Fewer bytes might be skipped if the end of the input stream is reached. The actual number \(k \) of bytes to be skipped is equal to the smaller of \(n \) and \(\text{count-pos} \). The value \(k \) is added into \(\text{pos} \) and \(k \) is returned.

Overrides: skip(long) in class InputStream

Parameters:

\(n \) - the number of bytes to be skipped.

Returns: the actual number of bytes skipped.
ByteArrayOutputStream

java.io

Description
This class implements an output stream in which the data is written into a byte array. The buffer automatically grows as data is written to it. The data can be retrieved using `toByteArray()` and `toString()`.

Since: JDK1.0

Member Summary

<table>
<thead>
<tr>
<th>Fields</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>buf</td>
<td>The buffer where data is stored.</td>
</tr>
<tr>
<td>count</td>
<td>The number of valid bytes in the buffer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constructors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ByteArrayInputStream()</td>
<td>Creates a new byte array output stream.</td>
</tr>
<tr>
<td>ByteArrayInputStream(int)</td>
<td>Creates a new byte array output stream, with a buffer capacity of the specified size, in bytes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>close()</td>
<td>Closes this output stream and releases any system resources associated with this stream.</td>
</tr>
<tr>
<td>reset()</td>
<td>Resets the count field of this byte array output stream to zero, so that all currently accumulated output in the output stream is discarded.</td>
</tr>
<tr>
<td>size()</td>
<td>Returns the current size of the buffer.</td>
</tr>
<tr>
<td>toByteArray()</td>
<td>Creates a newly allocated byte array.</td>
</tr>
<tr>
<td>toString()</td>
<td>Converts the buffer's contents into a string, translating bytes into characters according to the platform's default character encoding.</td>
</tr>
<tr>
<td>write(byte[], int, int)</td>
<td>Writes <code>len</code> bytes from the specified byte array starting at offset <code>off</code> to this byte array output stream.</td>
</tr>
<tr>
<td>write(int)</td>
<td>Writes the specified byte to this byte array output stream.</td>
</tr>
</tbody>
</table>

Inherited Member Summary

Methods inherited from class OutputStream
Inherited Member Summary

<table>
<thead>
<tr>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>write(byte[]), flush()</td>
</tr>
</tbody>
</table>

Methods inherited from class `Object`:

- getClass()
- hashCode()
- equals(Object)
- notify()
- notifyAll()
- wait(long)
- wait(long, int)
- wait()

Fields

buf

protected byte[] buf

The buffer where data is stored.

count

protected int count

The number of valid bytes in the buffer.

Constructors

ByteArrayOutputStream()

public ByteArrayOutputStream()

Creates a new byte array output stream. The buffer capacity is initially 32 bytes, though its size increases if necessary.

ByteArrayOutputStream(int)

public ByteArrayOutputStream(int size)

Creates a new byte array output stream, with a buffer capacity of the specified size, in bytes.

Parameters:

- size - the initial size.

Throws: `IllegalArgumentException` - if size is negative.

Methods
ByteArrayOutputStream

close()

public synchronized void close()

Closes this output stream and releases any system resources associated with this stream. A closed stream cannot perform output operations and cannot be reopened.

Overrides: close() in class OutputStream

Throws: IOException

reset()

public synchronized void reset()

Resets the count field of this byte array output stream to zero, so that all currently accumulated output in the output stream is discarded. The output stream can be used again, reusing the already allocated buffer space.

See Also: count

size()

public int size()

Returns the current size of the buffer.

Returns: the value of the count field, which is the number of valid bytes in this output stream.

See Also: count

toByteArray()

public synchronized byte[] toByteArray()

Creates a newly allocated byte array. Its size is the current size of this output stream and the valid contents of the buffer have been copied into it.

Returns: the current contents of this output stream, as a byte array.

See Also: size()

toString()

public String toString()

Converts the buffer's contents into a string, translating bytes into characters according to the platform's default character encoding.

Overrides: toString() in class Object

Returns: String translated from the buffer's contents.

Since: JDK1.1

write(byte[], int, int)
public synchronized void write(byte[] b, int off, int len)

Writes len bytes from the specified byte array starting at offset off to this byte array output stream.

Overrides: write(byte[], int, int) in class OutputStream

Parameters:
- b - the data.
- off - the start offset in the data.
- len - the number of bytes to write.

write(int)

public synchronized void write(int b)

Writes the specified byte to this byte array output stream.

Overrides: write(int) in class OutputStream

Parameters:
- b - the byte to be written.
DataInput
write(int)

java.io

DataInput

Syntax
public abstract interface DataInput

All Known Subinterfaces: Datagram

All Known Implementing Classes: DataInputStream

Description
The DataInput interface provides for reading bytes from a binary stream and reconstructing from them data in any of the Java primitive types. There is also a facility for reconstructing a String from data in Java modified UTF-8 format.

It is generally true of all the reading routines in this interface that if end of file is reached before the desired number of bytes has been read, an EOFException (which is a kind of IOException) is thrown. If any byte cannot be read for any reason other than end of file, an IOException other than EOFException is thrown. In particular, an IOException may be thrown if the input stream has been closed.

Since: JDK1.0

See Also: DataInputStream, DataOutput

Member Summary

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>readBoolean()</td>
<td>Reads one input byte and returns true if that byte is nonzero, false if that byte is zero.</td>
</tr>
<tr>
<td>readByte()</td>
<td>Reads and returns one input byte.</td>
</tr>
<tr>
<td>readChar()</td>
<td>Reads an input char and returns the char value.</td>
</tr>
<tr>
<td>readFully(byte[])</td>
<td>Reads some bytes from an input stream and stores them into the buffer array b.</td>
</tr>
<tr>
<td>readFully(byte[], int, int)</td>
<td>Reads len bytes from an input stream.</td>
</tr>
<tr>
<td>readInt()</td>
<td>Reads four input bytes and returns an int value.</td>
</tr>
<tr>
<td>readLong()</td>
<td>Reads eight input bytes and returns a long value.</td>
</tr>
<tr>
<td>readShort()</td>
<td>Reads two input bytes and returns a short value.</td>
</tr>
<tr>
<td>readUnsignedByte()</td>
<td>Reads one input byte, zero-extends it to type int, and returns the result, which is therefore in the range 0 through 255.</td>
</tr>
<tr>
<td>readUnsignedShort()</td>
<td>Reads two input bytes and returns an int value in the range 0 through 65535.</td>
</tr>
<tr>
<td>readUTF()</td>
<td>Reads in a string that has been encoded using a modified UTF-8 format.</td>
</tr>
<tr>
<td>skipBytes(int)</td>
<td>Makes an attempt to skip over n bytes of data from the input stream, discarding the skipped bytes.</td>
</tr>
</tbody>
</table>
Methods

readBoolean()

public boolean readBoolean()

Reads one input byte and returns true if that byte is nonzero, false if that byte is zero. This method is suitable for reading the byte written by the writeBoolean method of interface DataOutput.

Returns: the boolean value read.
Throws: EOFException - if this stream reaches the end before reading all the bytes.
 IOException - if an I/O error occurs.

readByte()

public byte readByte()

Reads and returns one input byte. The byte is treated as a signed value in the range -128 through 127, inclusive. This method is suitable for reading the byte written by the writeByte method of interface DataOutput.

Returns: the 8-bit value read.
Throws: EOFException - if this stream reaches the end before reading all the bytes.
 IOException - if an I/O error occurs.

readChar()

public char readChar()

Reads an input char and returns the char value. A Unicode char is made up of two bytes. Let a be the first byte read and b be the second byte. The value returned is:

(char)((a << 8) | (b & 0xff))

This method is suitable for reading bytes written by the writeChar method of interface DataOutput.

Returns: the Unicode char read.
Throws: EOFException - if this stream reaches the end before reading all the bytes.
 IOException - if an I/O error occurs.

readFully(byte[])

public void readFully(byte[] b)

Reads some bytes from an input stream and stores them into the buffer array b. The number of bytes read is equal to the length of b.

This method blocks until one of the following conditions occurs:

- b.length bytes of input data are available, in which case a normal return is made.
- End of file is detected, in which case an EOFException is thrown.
- An I/O error occurs, in which case an IOException other than EOFException is thrown.
DataInput

readFully(byte[], int, int)

If b is null, a NullPointerException is thrown. If b.length is zero, then no bytes are read. Otherwise, the first byte read is stored into element b[0], the next one into b[1], and so on. If an exception is thrown from this method, then it may be that some but not all bytes of b have been updated with data from the input stream.

Parameters:
 b - the buffer into which the data is read.

Throws:
 EOFException - if this stream reaches the end before reading all the bytes.
 IOException - if an I/O error occurs.

readFully(byte[], int, int)

public void readFully(byte[] b, int off, int len)

Reads len bytes from an input stream.

This method blocks until one of the following conditions occurs:

• len bytes of input data are available, in which case a normal return is made.
• End of file is detected, in which case an EOFException is thrown.
• An I/O error occurs, in which case an IOException other than EOFException is thrown.

If b is null, a NullPointerException is thrown. If off is negative, or len is negative, or off+len is greater than the length of the array b, then an IndexOutOfBoundsException is thrown. If len is zero, then no bytes are read. Otherwise, the first byte read is stored into element b[off], the next one into b[off+1], and so on. The number of bytes read is, at most, equal to len.

Parameters:
 b - the buffer into which the data is read.
 off - an int specifying the offset into the data.
 len - an int specifying the number of bytes to read.

Throws:
 EOFException - if this stream reaches the end before reading all the bytes.
 IOException - if an I/O error occurs.

readInt()

public int readInt()

Reads four input bytes and returns an int value. Let a be the first byte read, b be the second byte, c be the third byte, and d be the fourth byte. The value returned is:

```
(((a & 0xff) << 24) | ((b & 0xff) << 16) |
 &gt;32;((c & 0xff) &lt;&lt; 8) | (d & 0xff))
```

This method is suitable for reading bytes written by the writeInt method of interface DataOutput.

Returns:
the int value read.

Throws:
 EOFException - if this stream reaches the end before reading all the bytes.
 IOException - if an I/O error occurs.

readLong()
public long readLong()

Reads eight input bytes and returns a long value. Let a be the first byte read, b be the second byte, c be the third byte, d be the fourth byte, e be the fifth byte, f be the sixth byte, g be the seventh byte, and h be the eighth byte. The value returned is:

```
(((long)(a & 0xff) << 56) |
((long)(b & 0xff) << 48) |
((long)(c & 0xff) << 40) |
((long)(d & 0xff) << 32) |
((long)(e & 0xff) << 24) |
((long)(f & 0xff) << 16) |
((long)(g & 0xff) << 8) |
((long)(h & 0xff)))
```

This method is suitable for reading bytes written by the writeLong method of interface DataOutput.

Returns: the long value read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.
 IOException - if an I/O error occurs.

readShort()

public short readShort()

Reads two input bytes and returns a short value. Let a be the first byte read and b be the second byte. The value returned is:

```
(short)((a << 8) * (b & 0xff))
```

This method is suitable for reading the bytes written by the writeShort method of interface DataOutput.

Returns: the 16-bit value read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.
 IOException - if an I/O error occurs.

readUnsignedByte()

public int readUnsignedByte()

Reads one input byte, zero-extends it to type int, and returns the result, which is therefore in the range 0 through 255. This method is suitable for reading the byte written by the writeByte method of interface DataOutput if the argument to writeByte was intended to be a value in the range 0 through 255.

Returns: the unsigned 8-bit value read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.
 IOException - if an I/O error occurs.

readUnsignedShort()

public int readUnsignedShort()
DataInputStream
readUTF()

Reads two input bytes and returns an int value in the range 0 through 65535. Let a be the first byte read and b be the second byte. The value returned is:

```java
((((a & 0xff) << 8) | (b & 0xff))
```

This method is suitable for reading the bytes written by the writeShort method of interface DataOutput if the argument to writeShort was intended to be a value in the range 0 through 65535.

Returns: the unsigned 16-bit value read.

Throws: `EOFException` - if this stream reaches the end before reading all the bytes.

`IOException` - if an I/O error occurs.

readUTF()

```java
public String readUTF()
```

Reads in a string that has been encoded using a modified UTF-8 format. The general contract of readUTF is that it reads a representation of a Unicode character string encoded in Java modified UTF-8 format; this string of characters is then returned as a String.

First, two bytes are read and used to construct an unsigned 16-bit integer in exactly the manner of the readUnsignedShort method. This integer value is called the UTF length and specifies the number of additional bytes to be read. These bytes are then converted to characters by considering them in groups. The length of each group is computed from the value of the first byte of the group. The byte following a group, if any, is the first byte of the next group.

If the first byte of a group matches the bit pattern 0xxxxxxx (where x means "may be 0 or 1"), then the group consists of just that byte. The byte is zero-extended to form a character.

If the first byte of a group matches the bit pattern 110xxxxx, then the group consists of that byte a and a second byte b. If there is no byte b (because byte a was the last of the bytes to be read), or if byte b does not match the bit pattern 10xxxxxx, then a UTFDataFormatException is thrown. Otherwise, the group is converted to the character:

```java
(char)(((a & 0x1F) << 6) | (b & 0x3F))
```

If the first byte of a group matches the bit pattern 1110xxxx, then the group consists of that byte a and two more bytes b and c. If there is no byte c (because byte a was one of the last two of the bytes to be read), or either byte b or byte c does not match the bit pattern 10xxxxxx, then a UTFDataFormatException is thrown. Otherwise, the group is converted to the character:

```java
(char)(((a & 0x0F) << 12) | ((b & 0x3F) << 6) | (c & 0x3F))
```

If the first byte of a group matches the pattern 1111xxxx or the pattern 10xxxxxx, then a UTFDataFormatException is thrown.

If end of file is encountered at any time during this entire process, then an EOFException is thrown.

After every group has been converted to a character by this process, the characters are gathered, in the same order in which their corresponding groups were read from the input stream, to form a String, which is returned.

The writeUTF method of interface DataOutput may be used to write data that is suitable for reading by this method.

Returns: a Unicode string.

Throws: `EOFException` - if this stream reaches the end before reading all the bytes.
skipBytes(int)

public int skipBytes(int n)

Makes an attempt to skip over \(n \) bytes of data from the input stream, discarding the skipped bytes. However, it may skip over some smaller number of bytes, possibly zero. This may result from any of a number of conditions; reaching end of file before \(n \) bytes have been skipped is only one possibility. This method never throws an EOFException. The actual number of bytes skipped is returned.

Parameters:
- \(n \) - the number of bytes to be skipped.

Returns: the number of bytes skipped, which is always \(n \).

Throws:
- EOFException - if this stream reaches the end before skipping all the bytes.
- IOException - if an I/O error occurs.

IOException - if an I/O error occurs.

UTFDataFormatException - if the bytes do not represent a valid UTF-8 encoding of a string.
DataInputStream

Syntax

```java
class DataInputStream extends InputStream implements DataInput
```

Object

```
+--- InputStream
       +--- java.io.DataInputStream
```

All Implemented Interfaces: DataInput

Description

A data input stream lets an application read primitive Java data types from an underlying input stream in a machine-independent way. An application uses a data output stream to write data that can later be read by a data input stream.

Since: JDK1.0

See Also: DataOutputStream

Member Summary

Fields

```java
in
```

The input stream.

Constructors

```java
DataInputStream(InputStream)
```

Creates a DataInputStream and saves its argument, the input stream in, for later use.

Methods

```java
available()
close()
mark(int)
markSupported()
read()
read(byte[])
read(byte[], int, int)
readBoolean()
readByte()
readChar()
readFully(byte[])
readFully(byte[], int, int)
readInt()
readLong()
readShort()
```

Returns the number of bytes that can be read from this input stream without blocking.

Closes this input stream and releases any system resources associated with the stream.

Tests if this input stream supports the mark and reset methods.

Reads the next byte of data from this input stream.

See the general contract of the read method of DataInput.

Reads up to len bytes of data from this input stream into an array of bytes.

See the general contract of the readBoolean method of DataInput.

See the general contract of the readByte method of DataInput.

See the general contract of the readChar method of DataInput.

See the general contract of the readFully method of DataInput.

See the general contract of the readInt method of DataInput.

See the general contract of the readLong method of DataInput.

See the general contract of the readShort method of DataInput.
java.io

DataInputStream

Fields

- **in**

 protected `InputStream` **in**

 The input stream.

Constructors

DataInputStream(InputStream)

- **public** `DataInputStream(InputStream in)`

 Creates a `DataInputStream` and saves its argument, the input stream **in**, for later use.

 Parameters:

 - `in` - the input stream.

Methods

available()

- **public int available()**

 See the general contract of the `readUnsignedByte` method of `DataInput`.

See the general contract of the `readUnsignedShort` method of `DataInput`.

Reads from the stream **in** a representation of a Unicode character string encoded in Java modified UTF-8 format; this string of characters is then returned as a `String`. Repositions this stream to the position at the time the `mark` method was last called on this input stream.

Skips over and discards `n` bytes of data from the input stream.

See the general contract of the `skipBytes` method of `DataInput`.

See the general contract of the `readUTF` method of `DataInput`.

See the general contract of the `readUTF(DataInput)` method of `DataInput`.

Inherited from class `Object`:

- `getClass()`, `hashCode()`, `equals(Object)`, `toString()`, `notify()`, `notifyAll()`, `wait(long)`, `wait(long, int)`, `wait()`
close()

public void close()

Closes this input stream and releases any system resources associated with the stream. This method simply
performs in.close().

Overrides: close() in class InputStream

Throws: IOException - if an I/O error occurs.

mark(int)

public synchronized void mark(int readlimit)

Marks the current position in this input stream. A subsequent call to the reset method repositions this
stream at the last marked position so that subsequent reads re-read the same bytes.

The readlimit argument tells this input stream to allow that many bytes to be read before the mark posi-
tion gets invalidated.

This method simply performs in.mark(readlimit).

Overrides: mark(int) in class InputStream

Parameters:
readlimit - the maximum limit of bytes that can be read before the mark position becomes invalid.

markSupported()

public boolean markSupported()

Tests if this input stream supports the mark and reset methods. This method simply performs
in.markSupported().

Overrides: markSupported() in class InputStream

Returns: true if this stream type supports the mark and reset method; false otherwise.

read()

public int read()

Reads the next byte of data from this input stream. The value byte is returned as an int in the range 0 to
255. If no byte is available because the end of the stream has been reached, the value -1 is returned. This
method blocks until input data is available, the end of the stream is detected, or an exception is thrown.

This method simply performs in.read() and returns the result.

Overrides: read() in class InputStream
Returns: the next byte of data, or −1 if the end of the stream is reached.
Throws: IOException - if an I/O error occurs.

read(byte[]) public final int read(byte[] b)

See the general contract of the read method of DataInput.
Bytes for this operation are read from the contained input stream.
Overrides: read(byte[]) in class InputStream
Parameters: b - the buffer into which the data is read.
Returns: the total number of bytes read into the buffer, or −1 if there is no more data because the end of the stream has been reached.
Throws: IOException - if an I/O error occurs.
See Also: read(byte[], int, int)

read(byte[], int, int)

public final int read(byte[] b, int off, int len)

Reads up to len bytes of data from this input stream into an array of bytes. This method blocks until some input is available.
This method simply performs in.read(b, off, len) and returns the result.
Overrides: read(byte[], int, int) in class InputStream
Parameters: b - the buffer into which the data is read.
off - the start offset of the data.
len - the maximum number of bytes read.
Returns: the total number of bytes read into the buffer, or −1 if there is no more data because the end of the stream has been reached.
Throws: IOException - if an I/O error occurs.

readBoolean() public final boolean readBoolean()

See the general contract of the readBoolean method of DataInput.
Bytes for this operation are read from the contained input stream.
Specified By: readBoolean() in interface DataInput
Returns: the boolean value read.
Throws: EOFException - if this input stream has reached the end.
IOException - if an I/O error occurs.
public final byte readByte()

See the general contract of the readByte method of DataInput.
Bytes for this operation are read from the contained input stream.

Specified By: readByte() in interface DataInput
Returns: the next byte of this input stream as a signed 8-bit byte.
Throws: EOFException - if this input stream has reached the end.
 IOException - if an I/O error occurs.

public final char readChar()

See the general contract of the readChar method of DataInput.
Bytes for this operation are read from the contained input stream.

Specified By: readChar() in interface DataInput
Returns: the next two bytes of this input stream as a Unicode character.
Throws: EOFException - if this input stream reaches the end before reading two bytes.
 IOException - if an I/O error occurs.

public final void readFully(byte[] b)

See the general contract of the readFully method of DataInput.
Bytes for this operation are read from the contained input stream.

Specified By: readFully(byte[]) in interface DataInput
Parameters: b - the buffer into which the data is read.
Throws: EOFException - if this input stream reaches the end before reading all the bytes.
 IOException - if an I/O error occurs.

public final void readFully(byte[], int, int)

See the general contract of the readFully method of DataInput.
Bytes for this operation are read from the contained input stream.

Specified By: readFully(byte[], int, int) in interface DataInput
Parameters: b - the buffer into which the data is read.
 off - the start offset of the data.
DataInputStream

readInt()

public final int readInt()

See the general contract of the readInt method of DataInput.

Bytes for this operation are read from the contained input stream.

Specified By: readInt() in interface DataInput

Returns: the next four bytes of this input stream, interpreted as an int.

Throws: EOFException - if this input stream reaches the end before reading four bytes.

IOException - if an I/O error occurs.

readLong()

public final long readLong()

See the general contract of the readLong method of DataInput.

Bytes for this operation are read from the contained input stream.

Specified By: readLong() in interface DataInput

Returns: the next eight bytes of this input stream, interpreted as a long.

Throws: EOFException - if this input stream reaches the end before reading eight bytes.

IOException - if an I/O error occurs.

readShort()

public final short readShort()

See the general contract of the readShort method of DataInput.

Bytes for this operation are read from the contained input stream.

Specified By: readShort() in interface DataInput

Returns: the next two bytes of this input stream, interpreted as a signed 16-bit number.

Throws: EOFException - if this input stream reaches the end before reading two bytes.

IOException - if an I/O error occurs.

readUnsignedByte()

public final int readUnsignedByte()

See the general contract of the readUnsignedByte method of DataInput.

Bytes for this operation are read from the contained input stream.

Specified By: readUnsignedByte() in interface DataInput
Returns: the next byte of this input stream, interpreted as an unsigned 8-bit number.

Throws: `EOFException` - if this input stream has reached the end.

`IOException` - if an I/O error occurs.

readUnsignedShort()

```java
public final int readUnsignedShort()
```

See the general contract of the `readUnsignedShort` method of `DataInput`.

Bytes for this operation are read from the contained input stream.

Specified By: `readUnsignedShort()` in interface `DataInput`

Returns: the next two bytes of this input stream, interpreted as an unsigned 16-bit integer.

Throws: `EOFException` - if this input stream reaches the end before reading two bytes.

`IOException` - if an I/O error occurs.

readUTF()

```java
public final String readUTF()
```

See the general contract of the `readUTF` method of `DataInput`.

Bytes for this operation are read from the contained input stream.

Specified By: `readUTF()` in interface `DataInput`

Returns: a Unicode string.

Throws: `EOFException` - if this input stream reaches the end before reading all the bytes.

`IOException` - if an I/O error occurs.

See Also: `readUTF(DataInput)`

readUTF(DataInput)

```java
public static final String readUTF(DataInput in)
```

Reads from the stream `in` a representation of a Unicode character string encoded in Java modified UTF-8 format; this string of characters is then returned as a `String`. The details of the modified UTF-8 representation are exactly the same as for the `readUTF` method of `DataInput`.

Parameters:
- `in` - a data input stream.

Returns: a Unicode string.

Throws: `EOFException` - if the input stream reaches the end before all the bytes.

`IOException` - if an I/O error occurs.

`UTFDataFormatException` - if the bytes do not represent a valid UTF-8 encoding of a Unicode string.

See Also: `readUnsignedShort()`
reset()

public synchronized void reset()

Repositions this stream to the position at the time the mark method was last called on this input stream. This method simply performs in.reset().

Stream marks are intended to be used in situations where you need to read ahead a little to see what's in the stream. Often this is most easily done by invoking some general parser. If the stream is of the type handled by the parse, it just chugs along happily. If the stream is not of that type, the parser should toss an exception when it fails. If this happens within readlimit bytes, it allows the outer code to reset the stream and try another parser.

Overrides: reset() in class InputStream

Throws: IOException - if the stream has not been marked or if the mark has been invalidated.

skip(long)

public long skip(long n)

Skips over and discards n bytes of data from the input stream. The skip method may, for a variety of reasons, end up skipping over some smaller number of bytes, possibly 0. The actual number of bytes skipped is returned.

This method simply performs in.skip(n).

Overrides: skip(long) in class InputStream

Parameters:

- n - the number of bytes to be skipped.

Returns: the actual number of bytes skipped.

Throws: IOException - if an I/O error occurs.

skipBytes(int)

public final int skipBytes(int n)

See the general contract of the skipBytes method of DataInput.

Bytes for this operation are read from the contained input stream.

Specified By: skipBytes(int) in interface DataInput

Parameters:

- n - the number of bytes to be skipped.

Returns: the actual number of bytes skipped.

Throws: IOException - if an I/O error occurs.
DataOutput

Syntax

```java
public abstract interface DataOutput
```

All Known Subinterfaces: **Datagram**

All Known Implementing Classes: **DataOutputStream**

Description

The `DataOutput` interface provides for converting data from any of the Java primitive types to a series of bytes and writing these bytes to a binary stream. There is also a facility for converting a `String` into Java modified UTF-8 format and writing the resulting series of bytes.

For all the methods in this interface that write bytes, it is generally true that if a byte cannot be written for any reason, an `IOException` is thrown.

Since: JDK1.0

See Also: **DataInput, DataOutputStream**

Member Summary

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>write(byte[])</code></td>
<td>Writes to the output stream all the bytes in array <code>b</code>.</td>
</tr>
<tr>
<td><code>write(byte[], int, int)</code></td>
<td>Writes <code>len</code> bytes from array <code>b</code>, in order, to the output stream.</td>
</tr>
<tr>
<td><code>write(int)</code></td>
<td>Writes the eight low-order bits of the argument <code>b</code>.</td>
</tr>
<tr>
<td><code>writeBoolean(boolean)</code></td>
<td>Writes a boolean value to this output stream.</td>
</tr>
<tr>
<td><code>writeByte(int)</code></td>
<td>Writes the eight low-order bits of the argument <code>v</code>.</td>
</tr>
<tr>
<td><code>writeChar(int)</code></td>
<td>Writes a <code>char</code> value, which is comprised of two bytes, to the output stream.</td>
</tr>
<tr>
<td><code>writeChars(String)</code></td>
<td>Writes every character in the string <code>s</code>, to the output stream, in order, two bytes per character.</td>
</tr>
<tr>
<td><code>writeInt(int)</code></td>
<td>Writes an <code>int</code> value, which is comprised of four bytes, to the output stream.</td>
</tr>
<tr>
<td><code>writeLong(long)</code></td>
<td>Writes an <code>long</code> value, which is comprised of four bytes, to the output stream.</td>
</tr>
<tr>
<td><code>writeShort(int)</code></td>
<td>Writes two bytes to the output stream to represent the value of the argument.</td>
</tr>
<tr>
<td><code>writeUTF(String)</code></td>
<td>Writes two bytes of length information to the output stream, followed by the Java modified UTF representation of every character in the string <code>s</code>.</td>
</tr>
</tbody>
</table>

Methods

`write(byte[])`
public void write(byte[] b)

Writes to the output stream all the bytes in array b. If b is null, a NullPointerException is thrown. If b.length is zero, then no bytes are written. Otherwise, the byte b[0] is written first, then b[1], and so on; the last byte written is b[b.length-1].

Parameters:

 b - the data.

Throws: IOException - if an I/O error occurs.

write(byte[], int, int)

public void write(byte[] b, int off, int len)

Writes len bytes from array b, in order, to the output stream. If b is null, a NullPointerException is thrown. If off is negative, or len is negative, or off+len is greater than the length of the array b, then an IndexOutOfBoundsException is thrown. If len is zero, then no bytes are written. Otherwise, the byte b[off] is written first, then b[off+1], and so on; the last byte written is b[off+len-1].

Parameters:

 b - the data.

 off - the start offset in the data.

 len - the number of bytes to write.

Throws: IOException - if an I/O error occurs.

write(int)

public void write(int b)

Writes to the output stream the eight low-order bits of the argument b. The 24 high-order bits of b are ignored.

Parameters:

 b - the byte to be written.

Throws: IOException - if an I/O error occurs.

writeBoolean(boolean)

public void writeBoolean(boolean v)

Writes a boolean value to this output stream. If the argument v is true, the value (byte)1 is written; if v is false, the value (byte)0 is written. The byte written by this method may be read by the readBoolean method of interface DataInput, which will then return a boolean equal to v.

Parameters:

 v - the boolean to be written.

Throws: IOException - if an I/O error occurs.

writeByte(int)

public void writeByte(int v)
Write to the output stream the eight low-order bits of the argument v. The 24 high-order bits of v are ignored. (This means that writeByte does exactly the same thing as write for an integer argument.) The byte written by this method may be read by the readByte method of interface DataInput, which will then return a byte equal to (byte)v.

Parameters:
- v - the byte value to be written.

Throws: [IOException](#) - if an I/O error occurs.

writeChar(int)

```java
public void writeChar(int v)
```

Writes a char value, which is comprised of two bytes, to the output stream. The byte values to be written, in the order shown, are:

- (byte)(0xff & (v >> 8))
- (byte)(0xff & v)

The bytes written by this method may be read by the readChar method of interface DataInput, which will then return a char equal to (char)v.

Parameters:
- v - the char value to be written.

Throws: [IOException](#) - if an I/O error occurs.

writeChars(String)

```java
public void writeChars(String s)
```

Writes every character in the string s, to the output stream, in order, two bytes per character. If s is null, a NullPointerException is thrown. If s.length is zero, then no characters are written. Otherwise, the character s[0] is written first, then s[1], and so on; the last character written is s[s.length-1]. For each character, two bytes are actually written, high-order byte first, in exactly the manner of the writeChar method.

Parameters:
- s - the string value to be written.

Throws: [IOException](#) - if an I/O error occurs.

writeInt(int)

```java
public void writeInt(int v)
```

Writes an int value, which is comprised of four bytes, to the output stream. The byte values to be written, in the order shown, are:

- (byte)(0xff & (v >> 24))
- (byte)(0xff & (v >> 16))
- (byte)(0xff & (v >> 8))
- (byte)(0xff & v)

The bytes written by this method may be read by the readInt method of interface DataInput, which will then return an int equal to v.
writeLong(long)

public void writeLong(long v)

Writes a long value, which is comprised of four bytes, to the output stream. The byte values to be written, in the order shown, are:

(byte)(0xff & (v >> 48))
(byte)(0xff & (v >> 40))
(byte)(0xff & (v >> 32))
(byte)(0xff & (v >> 24))
(byte)(0xff & (v >> 16))
(byte)(0xff & (v >> 8))
(byte)(0xff & v)

The bytes written by this method may be read by the readLong method of interface DataInput, which will then return a long equal to v.

Parameters:
 v - the long value to be written.

Throws: IOException - if an I/O error occurs.

writeShort(int)

public void writeShort(int v)

Writes two bytes to the output stream to represent the value of the argument. The byte values to be written, in the order shown, are:

(byte)(0xff & (v >> 8))
(byte)(0xff & v)

The bytes written by this method may be read by the readShort method of interface DataInput, which will then return a short equal to (short)v.

Parameters:
 v - the short value to be written.

Throws: IOException - if an I/O error occurs.

writeUTF(String)

public void writeUTF(String str)

Writes two bytes of length information to the output stream, followed by the Java modified UTF representation of every character in the string s. If s is null, a NullPointerException is thrown. Each character in the string s is converted to a group of one, two, or three bytes, depending on the value of the character.

If a character c is in the range 92;u0001 through 92;u007f, it is represented by one byte:
DataOutput

```
java.io

writeUTF(String)
```

If a character `c` is \u0000 or is in the range \u0080 through \u07ff, then it is represented by two bytes, to be written in the order shown:

```
(byte)(0xc0 | (0x1f & (c >> 6))
(byte)(0x80 | (0x3f & c))
```

If a character `c` is in the range \u0800 through \uffff, then it is represented by three bytes, to be written in the order shown:

```
(byte)(0xe0 | (0x0f & (c >> 12))
(byte)(0x80 | (0x3f & (c >> 6))
(byte)(0x80 | (0x3f & c))
```

First, the total number of bytes needed to represent all the characters of `s` is calculated. If this number is larger than 65535, then a UTFDataFormatError is thrown. Otherwise, this length is written to the output stream in exactly the manner of the writeShort method; after this, the one-, two-, or three-byte representation of each character in the string `s` is written.

The bytes written by this method may be read by the readUTF method of interface DataInput, which will then return a String equal to `s`.

Parameters:

- `str` - the string value to be written.

Throws: [IOException](#) - if an I/O error occurs.
DataOutputStream

Syntax

```java
public class DataOutputStream extends OutputStream implements DataOutput
```

All Implemented Interfaces:

- DataOutput

Description

A data input stream lets an application write primitive Java data types to an output stream in a portable way. An application can then use a data input stream to read the data back in.

Since: JDK1.0

See Also: DataInputStream

Member Summary

<table>
<thead>
<tr>
<th>Fields</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>out</code></td>
<td>The output stream.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constructors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataOutputStream(OutputStream)</code></td>
<td>Creates a new data output stream to write data to the specified underlying output stream.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>close()</code></td>
<td>Closes this output stream and releases any system resources associated with the stream.</td>
</tr>
<tr>
<td><code>flush()</code></td>
<td>Flushes this data output stream.</td>
</tr>
<tr>
<td><code>write(byte[], int, int)</code></td>
<td>Writes <code>len</code> bytes from the specified byte array starting at offset <code>off</code> to the underlying output stream.</td>
</tr>
<tr>
<td><code>write(int)</code></td>
<td>Writes the specified byte (the low eight bits of the argument <code>b</code>) to the underlying output stream.</td>
</tr>
<tr>
<td><code>writeBoolean(boolean)</code></td>
<td>Writes a boolean to the underlying output stream as a 1-byte value.</td>
</tr>
<tr>
<td><code>writeByte(int)</code></td>
<td>Writes a byte to the underlying output stream as a 1-byte value.</td>
</tr>
<tr>
<td><code>writeChar(int)</code></td>
<td>Writes a char to the underlying output stream as a 2-byte value, high byte first.</td>
</tr>
<tr>
<td><code>writeChars(String)</code></td>
<td>Writes a string to the underlying output stream as a sequence of characters.</td>
</tr>
<tr>
<td><code>writeInt(int)</code></td>
<td>Writes an int to the underlying output stream as four bytes, high byte first.</td>
</tr>
<tr>
<td><code>writeLong(long)</code></td>
<td>Writes a long to the underlying output stream as eight bytes, high byte first.</td>
</tr>
<tr>
<td><code>writeShort(int)</code></td>
<td>Writes a short to the underlying output stream as two bytes, high byte first.</td>
</tr>
<tr>
<td><code>writeUTF(String)</code></td>
<td>Writes a string to the underlying output stream using UTF-8 encoding in a machine-independent manner.</td>
</tr>
</tbody>
</table>
Inherited Member Summary

Methods inherited from class OutputStream
write(byte[])

Methods inherited from class Object
getClass(), hashCode(), equals(Object), toString(), notify(), notifyAll(), wait(long), wait(long, int), wait()

Methods inherited from interface DataOutput
write(byte[]).

Fields

class OutputStream

protected OutputStream out

The output stream.

Constructors

public DataOutputStream(OutputStream)

Creates a new data output stream to write data to the specified underlying output stream. The counter written is set to zero.

Parameters:
out - the underlying output stream, to be saved for later use.

Methods

close()

public void close()

Closes this output stream and releases any system resources associated with the stream.

The close method calls its flush method, and then calls the close method of its underlying output stream.
flush()

```java
public void flush()

Flushes this data output stream. This forces any buffered output bytes to be written out to the stream.

The flush method of DataOutputStream calls the flush method of its underlying output stream.

**Overrides: flush() in class OutputStream**

**Throws: IOException - if an I/O error occurs.**
```

write(byte[], int, int)

```java
public void write(byte[] b, int off, int len)

Writes len bytes from the specified byte array starting at offset off to the underlying output stream. If no exception is thrown, the counter written is incremented by len.

**Specified By:** write(byte[], int, int) in interface DataOutput

**Overrides:** write(byte[], int, int) in class OutputStream

**Parameters:**

- `b` - the data.
- `off` - the start offset in the data.
- `len` - the number of bytes to write.

**Throws:** IOException - if an I/O error occurs.
```

write(int)

```java
public void write(int b)

Writes the specified byte (the low eight bits of the argument b) to the underlying output stream. If no exception is thrown, the counter written is incremented by 1.

Implements the write method of OutputStream.

**Specified By:** write(int) in interface DataOutput

**Overrides:** write(int) in class OutputStream

**Parameters:**

- `b` - the byte to be written.

**Throws:** IOException - if an I/O error occurs.
```

writeBoolean(boolean)

```java
public final void writeBoolean(boolean v)

```
DataOutputStream

writeByte(int)

 Writes a boolean to the underlying output stream as a 1-byte value. The value true is written out as the value (byte)1; the value false is written out as the value (byte)0. If no exception is thrown, the counter written is incremented by 1.

 Specified By: writeBoolean(boolean) in interface DataOutput

 Parameters:
 v - a boolean value to be written.

 Throws: IOException - if an I/O error occurs.

public final void writeByte(int v)

 Writes out a byte to the underlying output stream as a 1-byte value. If no exception is thrown, the counter written is incremented by 1.

 Specified By: writeByte(int) in interface DataOutput

 Parameters:
 v - a byte value to be written.

 Throws: IOException - if an I/O error occurs.

writeChar(int)

public final void writeChar(int v)

 Writes a char to the underlying output stream as a 2-byte value, high byte first. If no exception is thrown, the counter written is incremented by 2.

 Specified By: writeChar(int) in interface DataOutput

 Parameters:
 v - a char value to be written.

 Throws: IOException - if an I/O error occurs.

writeChars(String)

public final void writeChars(String s)

 Writes a string to the underlying output stream as a sequence of characters. Each character is written to the data output stream as if by the writeChar method. If no exception is thrown, the counter written is incremented by twice the length of s.

 Specified By: writeChars(String) in interface DataOutput

 Parameters:
 s - a String value to be written.

 Throws: IOException - if an I/O error occurs.

 See Also: writeChar(int).

writeInt(int)

public final void writeInt(int v)
java.io

DataOutputStream

writeLong(long)

public final void writeLong(long v)

Writes a long to the underlying output stream as eight bytes, high byte first. If no exception is thrown, the
counter written is incremented by 8.

Specified By: writeLong(long) in interface DataOutput

Parameters:
 v - a long to be written.

Throws: IOException - if an I/O error occurs.

writeShort(int)

public final void writeShort(int v)

Writes a short to the underlying output stream as two bytes, high byte first. If no exception is thrown, the
counter written is incremented by 2.

Specified By: writeShort(int) in interface DataOutput

Parameters:
 v - a short to be written.

Throws: IOException - if an I/O error occurs.

writeUTF(String)

public final void writeUTF(String str)

Writes a string to the underlying output stream using UTF-8 encoding in a machine-independent manner.

First, two bytes are written to the output stream as if by the writeShort method giving the number of
bytes to follow. This value is the number of bytes actually written out, not the length of the string. Following
the length, each character of the string is output, in sequence, using the UTF-8 encoding for the character.
If no exception is thrown, the counter written is incremented by the total number of bytes written to
the output stream. This will be at least two plus the length of str, and at most two plus thrice the length of
str.

Specified By: writeUTF(String) in interface DataOutput

Parameters:
 str - a string to be written.

Throws: IOException - if an I/O error occurs.
EOFException

```
java.io
```

EOFException

Syntax

```java
public class EOFException extends IOException
```

Object

```
+-- Throwable
    +-- Exception
        +-- IOException
            +-- java.io.EOFException
```

Description

Signals that an end of file or end of stream has been reached unexpectedly during input.

This exception is mainly used by data input streams, which generally expect a binary file in a specific format, and for which an end of stream is an unusual condition. Most other input streams return a special value on end of stream.

Note that some input operations react to end-of-file by returning a distinguished value (such as −1) rather than by throwing an exception.

Since: JDK1.0

See Also: [DataInputStream](#), [IOException](#)

Member Summary

Constructors

- `EOFException()`
 Constructs an `EOFException` with null as its error detail message.
- `EOFException(String)`
 Constructs an `EOFException` with the specified detail message.

Inherited Member Summary

Methods inherited from class `Throwable`

- `getMessage()`, `toString()`, `printStackTrace()`

Methods inherited from class `Object`

- `getClass()`, `hashCode()`, `equals(Object)`, `notify()`, `notifyAll()`, `wait(long)`, `wait(long, int)`, `wait()`
Constructors

EOFException()

 public EOFException()

 Constructs an EOFException with null as its error detail message.

EOFException(String)

 public EOFException(String s)

 Constructs an EOFException with the specified detail message. The string s may later be retrieved by
 the getMessage() method of class java.lang.Throwable.

 Parameters:

 s - the detail message.
InputStream

EOFException(String)

java.io

InputStream

Syntax

```java
public abstract class InputStream

Object
  +--- java.io.InputStream
```

Direct Known Subclasses: ByteArrayInputStream, DataInputStream

Description

This abstract class is the superclass of all classes representing an input stream of bytes. Applications that need to define a subclass of `InputStream` must always provide a method that returns the next byte of input.

Since: JDK1.0

See Also: ByteArrayInputStream, DataInputStream, read(), OutputStream

Member Summary

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>InputStream()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>available()</td>
</tr>
<tr>
<td>close()</td>
</tr>
<tr>
<td>mark(int)</td>
</tr>
<tr>
<td>markSupported()</td>
</tr>
<tr>
<td>read()</td>
</tr>
<tr>
<td>read(byte[])</td>
</tr>
<tr>
<td>read(byte[], int, int)</td>
</tr>
<tr>
<td>reset()</td>
</tr>
<tr>
<td>skip(long)</td>
</tr>
</tbody>
</table>

- `available()` returns the number of bytes that can be read (or skipped over) from this input stream without blocking by the next caller of a method for this input stream.
- `close()` closes this input stream and releases any system resources associated with the stream.
- `mark()` marks the current position in this input stream.
- `markSupported()` tests if this input stream supports the `mark` and `reset` methods.
- `read()` reads the next byte of data from the input stream.
- `read(byte[])` reads some number of bytes from the input stream and stores them into the buffer array.
- `read(byte[], int, int)` reads up to `len` bytes of data from the input stream into an array of bytes.
- `reset()` repositions this stream to the position at the time the `mark` method was last called on this input stream.
- `skip(long)` skips over and discards `n` bytes of data from this input stream.

Inherited Member Summary

Methods inherited from class [Object](#)
java.io

InputStream

InputStream()

public InputStream()

Methods

available()

public int available()

Returns the number of bytes that can be read (or skipped over) from this input stream without blocking by the next caller of a method for this input stream. The next caller might be the same thread or another thread. The available method for class InputStream always returns 0.

This method should be overridden by subclasses.

Returns: the number of bytes that can be read from this input stream without blocking.

Throws: IOException - if an I/O error occurs.

close()

public void close()

Closes this input stream and releases any system resources associated with the stream.

The close method of InputStream does nothing.

Throws: IOException - if an I/O error occurs.

mark(int)

public synchronized void mark(int readlimit)

Marks the current position in this input stream. A subsequent call to the reset method repositions this stream at the last marked position so that subsequent reads re-read the same bytes.

The readlimit arguments tells this input stream to allow that many bytes to be read before the mark position gets invalidated.

The general contract of mark is that, if the method markSupported returns true, the stream somehow remembers all the bytes read after the call to mark and stands ready to supply those same bytes again if and

Inherited Member Summary

<table>
<thead>
<tr>
<th>Constructor/Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>getClass(), hashCode(), equals(Object), toString(), notify(), notifyAll(), wait(long), wait(long, int), wait()</td>
</tr>
</tbody>
</table>
whenever the method reset is called. However, the stream is not required to remember any data at all if more than readlimit bytes are read from the stream before reset is called.

The mark method of InputStream does nothing.

Parameters:
- readlimit - the maximum limit of bytes that can be read before the mark position becomes invalid.

See Also: reset()

markSupported()

```java
public boolean markSupported()
```

Tests if this input stream supports the mark and reset methods. The markSupported method of InputStream returns false.

Returns: true if this true type supports the mark and reset method; false otherwise.

See Also: mark(int). reset()

read()

```java
public abstract int read()
```

Reads the next byte of data from the input stream. The value byte is returned as an int in the range 0 to 255. If no byte is available because the end of the stream has been reached, the value -1 is returned. This method blocks until input data is available, the end of the stream is detected, or an exception is thrown.

A subclass must provide an implementation of this method.

Returns: the next byte of data, or -1 if the end of the stream is reached.

Throws: IOException - if an I/O error occurs.

read(byte[])

```java
public int read(byte[] b)
```

Reads some number of bytes from the input stream and stores them into the buffer array b. The number of bytes actually read is returned as an integer. This method blocks until input data is available, end of file is detected, or an exception is thrown.

If b is null, a NullPointerException is thrown. If the length of b is zero, then no bytes are read and 0 is returned; otherwise, there is an attempt to read at least one byte. If no byte is available because the stream is at end of file, the value -1 is returned; otherwise, at least one byte is read and stored into b.

The first byte read is stored into element b[0], the next one into b[1], and so on. The number of bytes read is, at most, equal to the length of b. Let k be the number of bytes actually read; these bytes will be stored in elements b[0] through b[k-1], leaving elements b[k] through b[b.length-1] unaffected.

If the first byte cannot be read for any reason other than end of file, then an IOException is thrown. In particular, an IOException is thrown if the input stream has been closed.

The read(b) method for class InputStream has the same effect as:

```java
read(b, 0, b.length)
```

Parameters:
- b - the buffer into which the data is read.
java.io InputStream

read(byte[], int, int)

Returns: the total number of bytes read into the buffer, or -1 if there is no more data because the end of the stream has been reached.

Throws: IOException - if an I/O error occurs.

See Also: read(byte[], int, int)

read(byte[], int, int)

```java
public int read(byte[] b, int off, int len)
```

Reads up to len bytes of data from the input stream into an array of bytes. An attempt is made to read as many as len bytes, but a smaller number may be read, possibly zero. The number of bytes actually read is returned as an integer.

This method blocks until input data is available, end of file is detected, or an exception is thrown.

If b is null, a NullPointerException is thrown.

If off is negative, or len is negative, or off+len is greater than the length of the array b, then an IndexOutOfBoundsException is thrown.

If len is zero, then no bytes are read and 0 is returned; otherwise, there is an attempt to read at least one byte. If no byte is available because the stream is at end of file, the value -1 is returned; otherwise, at least one byte is read and stored into b.

The first byte read is stored into element b[off], the next one into b[off+1], and so on. The number of bytes read is, at most, equal to len. Let k be the number of bytes actually read; these bytes will be stored in elements b[off] through b[off+k-1], leaving elements b[off+k] through b[off+len-1] unaffected.

In every case, elements b[0] through b[off] and elements b[off+len] through b[b.length-1] are unaffected.

If the first byte cannot be read for any reason other than end of file, then an IOException is thrown. In particular, an IOException is thrown if the input stream has been closed.

The read(b, off, len) method for class InputStream simply calls the method read() repeatedly. If the first such call results in an IOException, that exception is returned from the call to the read(b, off, len) method. If any subsequent call to read() results in an IOException, the exception is caught and treated as if it were end of file; the bytes read up to that point are stored into b and the number of bytes read before the exception occurred is returned. Subclasses are encouraged to provide a more efficient implementation of this method.

Parameters:

- b - the buffer into which the data is read.
- off - the start offset in array b at which the data is written.
- len - the maximum number of bytes to read.

Returns: the total number of bytes read into the buffer, or -1 if there is no more data because the end of the stream has been reached.

Throws: IOException - if an I/O error occurs.

See Also: read()
public synchronized void reset()

Repositions this stream to the position at the time the mark method was last called on this input stream.

The general contract of reset is:

- If the method markSupported returns true, then:
 - If the method mark has not been called since the stream was created, or the number of bytes read from
 the stream since mark was last called is larger than the argument to mark at that last call, then an
 IOException might be thrown.
 - If such an IOException is not thrown, then the stream is reset to a state such that all the bytes read
 since the most recent call to mark (or since the start of the file, if mark has not been called) will be
 resupplied to subsequent callers of the read method, followed by any bytes that otherwise would have
 been the next input data as of the time of the call to reset.
- If the method markSupported returns false, then:
 - The call to reset may throw an IOException.
 - If an IOException is not thrown, then the stream is reset to a fixed state that depends on the particu-
 lar type of the input stream and how it was created. The bytes that will be supplied to subsequent call-
 ers of the read method depend on the particular type of the input stream.

The method reset for class InputStream does nothing and always throws an IOException.

Throws: IOException - if this stream has not been marked or if the mark has been invalidated.

See Also: mark(int), IOException

skip(long)

public long skip(long n)

Skips over and discards n bytes of data from this input stream. The skip method may, for a variety of rea-
sons, end up skipping over some smaller number of bytes, possibly 0. This may result from any of a number
of conditions; reaching end of file before n bytes have been skipped is only one possibility. The actual num-
ber of bytes skipped is returned. If n is negative, no bytes are skipped.

The skip method of InputStream creates a byte array and then repeatedly reads into it until n bytes
have been read or the end of the stream has been reached. Subclasses are encouraged to provide a more effi-
cient implementation of this method.

Parameters:
 n - the number of bytes to be skipped.

Returns: the actual number of bytes skipped.

Throws: IOException - if an I/O error occurs.
InputStreamReader

Syntax
public class InputStreamReader extends Reader

Description
An InputStreamReader is a bridge from byte streams to character streams: It reads bytes and translates them into characters. The encoding that it uses may be specified by name, or the platform’s default encoding may be accepted.

Each invocation of one of an InputStreamReader's read() methods may cause one or more bytes to be read from the underlying byte-input stream. To enable the efficient conversion of bytes to characters, more bytes may be read ahead from the underlying stream than are necessary to satisfy the current read operation.

Member Summary

Constructors
InputStream-
Reader(InputStream) Create an InputStreamReader that uses the default character encoding.
InputStream-
Reader(InputStream, String) Create an InputStreamReader that uses the named character encoding.

Methods
close() Close the stream.
mark(int) Mark the present position in the stream.
markSupported() Tell whether this stream supports the mark() operation.
read() Read a single character.
read(char[], int, int) Read characters into a portion of an array.
ready() Tell whether this stream is ready to be read.
reset() Reset the stream.
skip(long) Skip characters.

Inherited Member Summary

Fields inherited from class Reader
lock

Methods inherited from class Reader
read(char[])
Constructors

InputStreamReader(InputStream)

public InputStreamReader(InputStream is)

Create an InputStreamReader that uses the default character encoding.

Parameters:

is - An InputStream

InputStreamReader(InputStream, String)

public InputStreamReader(InputStream is, String enc)

Create an InputStreamReader that uses the named character encoding.

Parameters:

is - An InputStream

enc - The name of a supported

Throws: UnsupportedEncodingException - If the named encoding is not supported

Methods

close()

public void close()

Close the stream.

Overrides: close() in class Reader

Throws: IOException - If an I/O error occurs

mark(int)

public void mark(int readAheadLimit)

Mark the present position in the stream.

Overrides: mark(int) in class Reader

Throws: IOException - If an I/O error occurs
markSupported()
```
public boolean markSupported()
Tell whether this stream supports the mark() operation.
Overrides: markSupported() in class Reader
```

read()
```
public int read()
Read a single character.
Overrides: read() in class Reader
Throws: IOException - If an I/O error occurs
```

read(char[], int, int)
```
public int read(char[] cbuf, int off, int len)
Read characters into a portion of an array.
Overrides: read(char[], int, int) in class Reader
Throws: IOException - If an I/O error occurs
```

ready()
```
public boolean ready()
Tell whether this stream is ready to be read.
Overrides: ready() in class Reader
Throws: IOException - If an I/O error occurs
```

reset()
```
public void reset()
Reset the stream.
Overrides: reset() in class Reader
Throws: IOException - If an I/O error occurs
```

skip(long)
```
public long skip(long n)
Skip characters.
Overrides: skip(long) in class Reader
Throws: IOException - If an I/O error occurs
InterruptedIOException

Syntax

```java
class INTERRUPTEDIOEXCEPTION extends IOException
```

Description

Signals that an I/O operation has been interrupted. An `InterruptedIOException` is thrown to indicate that an input or output transfer has been terminated because the thread performing it was terminated. The field `bytesTransferred` indicates how many bytes were successfully transferred before the interruption occurred.

Since: JDK1.0

See Also: InputStream, OutputStream

### Member Summary

<table>
<thead>
<tr>
<th>Fields</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bytesTransferred</code></td>
<td>Reports how many bytes had been transferred as part of the I/O operation before it was interrupted.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constructors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>InterruptedIOException()</code></td>
<td>Constructs an <code>InterruptedIOException</code> with null as its error detail message.</td>
</tr>
<tr>
<td><code>InterruptedIOException(String)</code></td>
<td>Constructs an <code>InterruptedIOException</code> with the specified detail message.</td>
</tr>
</tbody>
</table>

### Inherited Member Summary

Methods inherited from class `Throwable`

- `getMessage()`, `toString()`, `printStackTrace()`

Methods inherited from class `Object`

- `getClass()`, `hashCode()`, `equals(Object)`, `notify()`, `notifyAll()`, `wait(long)`, `wait(long, int)`, `wait()`
Fields

bytesTransferred

    public int bytesTransferred
    Reports how many bytes had been transferred as part of the I/O operation before it was interrupted.

Constructors

InterruptedIOException()

    public InterruptedIOException()
    Constructs an InterruptedIOException with null as its error detail message.

InterruptedIOException(String)

    public InterruptedIOException(String s)
    Constructs an InterruptedIOException with the specified detail message. The string s can be retrieved later by the getMessage() method of class java.lang.Throwable.

    Parameters:
        s - the detail message.
IOException

java.io

IOException

Syntax
public class IOException extends Exception

Object
  |-- Throwable
  |   |-- Exception
  |   |   |-- java.io.IOException

Direct Known Subclasses: ConnectionNotFoundException, EOFException, InterruptedIOException, UnsupportedEncodingException, UTFDataFormatException

Description
Signals that an I/O exception of some sort has occurred. This class is the general class of exceptions produced by failed or interrupted I/O operations.

Since: JDK1.0

See Also: InputStream, OutputStream

Member Summary

<table>
<thead>
<tr>
<th>Constructors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IOException()</td>
<td>Constructs an IOException with null as its error detail message.</td>
</tr>
<tr>
<td>IOException(String)</td>
<td>Constructs an IOException with the specified detail message.</td>
</tr>
</tbody>
</table>

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
getClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait().

Constructors
IOException()

    public IOException()
    Constructs an IOException with null as its error detail message.

IOException(String)

    public IOException(String s)
    Constructs an IOException with the specified detail message. The error message string s can later be retrieved by the getMessage() method of class java.lang.Throwable.

    Parameters:
    s - the detail message.
OutputStream

java.io

OutputStream

Syntax

public abstract class OutputStream

Direct Known Subclasses: ByteArrayInputStream, DataOutputStream, PrintStream

Description

This abstract class is the superclass of all classes representing an output stream of bytes. An output stream accepts output bytes and sends them to some sink.

Applications that need to define a subclass of OutputStream must always provide at least a method that writes one byte of output.

Since: JDK1.0

See Also: ByteArrayInputStream, DataOutputStream, InputStream, write(int)

Member Summary

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>OutputStream()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>close()</td>
</tr>
<tr>
<td>flush()</td>
</tr>
<tr>
<td>write(byte[])</td>
</tr>
<tr>
<td>write(byte[], int, int)</td>
</tr>
<tr>
<td>write(int)</td>
</tr>
</tbody>
</table>

- Closes this output stream and releases any system resources associated with this stream.
- Flushes this output stream and forces any buffered output bytes to be written out.
- Writes b.length bytes from the specified byte array to this output stream.
- Writes len bytes from the specified byte array starting at offset off to this output stream.
- Writes the specified byte to this output stream.

Inherited Member Summary

<table>
<thead>
<tr>
<th>Methods inherited from class Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>getClass(), hashCode(), equals(Object), toString(), notify(), notifyAll(), wait(long), wait(long, int), wait()</td>
</tr>
</tbody>
</table>
Constructors

OutputStream()

    public OutputStream()

Methods

close()

    public void close()

    Closes this output stream and releases any system resources associated with this stream. The general contract of close is that it closes the output stream. A closed stream cannot perform output operations and cannot be reopened.

    The close method of OutputStream does nothing.

    Throws:  IOException - if an I/O error occurs.

flush()

    public void flush()

    Flushes this output stream and forces any buffered output bytes to be written out. The general contract of flush is that calling it is an indication that, if any bytes previously written have been buffered by the implementation of the output stream, such bytes should immediately be written to their intended destination.

    The flush method of OutputStream does nothing.

    Throws:  IOException - if an I/O error occurs.

write(byte[])

    public void write(byte[] b)

   Writes b.length bytes from the specified byte array to this output stream. The general contract for write(b) is that it should have exactly the same effect as the call write(b, 0, b.length).

    Parameters:
    b - the data.

    Throws:  IOException - if an I/O error occurs.

    See Also:  write(byte[], int, int)

write(byte[], int, int)

    public void write(byte[] b, int off, int len)
Writes `len` bytes from the specified byte array starting at offset `off` to this output stream. The general contract for `write(b, off, len)` is that some of the bytes in the array `b` are written to the output stream in order; element `b[off]` is the first byte written and `b[off+len-1]` is the last byte written by this operation.

The `write` method of `OutputStream` calls the `write` method of one argument on each of the bytes to be written out. Subclasses are encouraged to override this method and provide a more efficient implementation.

If `b` is `null`, a `NullPointerException` is thrown.

If `off` is negative, or `len` is negative, or `off+len` is greater than the length of the array `b`, then an `IndexOutOfBoundsException` is thrown.

**Parameters:**
- `b` - the data.
- `off` - the start offset in the data.
- `len` - the number of bytes to write.

**Throws:** `IOException` - if an I/O error occurs. In particular, an `IOException` is thrown if the output stream is closed.

---

Writes the specified byte to this output stream. The general contract for `write` is that one byte is written to the output stream. The byte to be written is the eight low-order bits of the argument `b`. The 24 high-order bits of `b` are ignored.

Subclasses of `OutputStream` must provide an implementation for this method.

**Parameters:**
- `b` - the byte.

**Throws:** `IOException` - if an I/O error occurs. In particular, an `IOException` may be thrown if the output stream has been closed.
java.io

OutputStreamWriter

Syntax

public class OutputStreamWriter extends Writer

Object
  +-- Writer
  |    +-- java.io.OutputStreamWriter

Description

An OutputStreamWriter is a bridge from character streams to byte streams: Characters written to it are translated into bytes. The encoding that it uses may be specified by name, or the platform’s default encoding may be accepted.

Each invocation of a write() method causes the encoding converter to be invoked on the given character(s). The resulting bytes are accumulated in a buffer before being written to the underlying output stream. The size of this buffer may be specified, but by default it is large enough for most purposes. Note that the characters passed to the write() methods are not buffered.

Member Summary

<table>
<thead>
<tr>
<th>Constructors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OutputStreamWriter(OutputStream)</td>
<td>Create an OutputStreamWriter that uses the default character encoding.</td>
</tr>
<tr>
<td>OutputStreamWriter(OutputStream, String)</td>
<td>Create an OutputStreamWriter that uses the named character encoding.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>close()</td>
<td>Close the stream.</td>
</tr>
<tr>
<td>flush()</td>
<td>Flush the stream.</td>
</tr>
<tr>
<td>write(char[], int, int)</td>
<td>Write a portion of an array of characters.</td>
</tr>
<tr>
<td>write(int)</td>
<td>Write a single character.</td>
</tr>
<tr>
<td>write(String, int, int)</td>
<td>Write a portion of a string.</td>
</tr>
</tbody>
</table>

Inherited Member Summary

Fields inherited from class Writer
lock

Methods inherited from class Writer
write(char[]), write(String)
Constructors

OutputStreamWriter(OutputStream)

public OutputStreamWriter(OutputStream os)
Create an OutputStreamWriter that uses the default character encoding.

Parameters:
   os - An OutputStream

OutputStreamWriter(OutputStream, String)

public OutputStreamWriter(OutputStream os, String enc)
Create an OutputStreamWriter that uses the named character encoding.

Parameters:
   os - An OutputStream

   enc - The name of a supported

Throws: UnsupportedEncodingException - If the named encoding is not supported

Methods

close()

public void close()
Close the stream.

Overrides: close() in class Writer

Throws: IOException - If an I/O error occurs

flush()

public void flush()
Flush the stream.

Overrides: flush() in class Writer

Throws: IOException - If an I/O error occurs
public void write(char[] cbuf, int off, int len)

Write a portion of an array of characters.

Overrides: write(char[], int, int) in class Writer

Parameters:
  cbuf - Buffer of characters to be written
  off - Offset from which to start reading characters
  len - Number of characters to be written

Throws: IOException - If an I/O error occurs

public void write(int c)

Write a single character.

Overrides: write(int) in class Writer

Throws: IOException - If an I/O error occurs

public void write(String str, int off, int len)

Write a portion of a string.

Overrides: write(String, int, int) in class Writer

Parameters:
  str - String to be written
  off - Offset from which to start reading characters
  len - Number of characters to be written

Throws: IOException - If an I/O error occurs
java.io

PrintStream

Syntax

```
public class PrintStream extends OutputStream

Object
+--- OutputStream
 +--- java.io.PrintStream
```

Description

A PrintStream adds functionality to another output stream, namely the ability to print representations of various data values conveniently. Two other features are provided as well. Unlike other output streams, a PrintStream never throws an IOException; instead, exceptional situations merely set an internal flag that can be tested via the checkError method. Optionally, a PrintStream can be created so as to flush automatically; this means that the flush method is automatically invoked after a byte array is written, one of the println methods is invoked, or a newline character or byte (\n) is written.

All characters printed by a PrintStream are converted into bytes using the platform's default character encoding.

Since: JDK1.0

Member Summary

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrintStream(OutputStream)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>checkError()</td>
</tr>
<tr>
<td>close()</td>
</tr>
<tr>
<td>flush()</td>
</tr>
<tr>
<td>print(boolean)</td>
</tr>
<tr>
<td>print(char)</td>
</tr>
<tr>
<td>print(char[])</td>
</tr>
<tr>
<td>print(int)</td>
</tr>
<tr>
<td>print(long)</td>
</tr>
<tr>
<td>print(Object)</td>
</tr>
<tr>
<td>print(String)</td>
</tr>
<tr>
<td>println()</td>
</tr>
<tr>
<td>println(boolean)</td>
</tr>
<tr>
<td>println(char)</td>
</tr>
<tr>
<td>println(char[])</td>
</tr>
<tr>
<td>println(int)</td>
</tr>
<tr>
<td>println(long)</td>
</tr>
<tr>
<td>println(Object)</td>
</tr>
<tr>
<td>println(String)</td>
</tr>
</tbody>
</table>

Create a new print stream.

Flush the stream and check its error state.

Close the stream.

Flush the stream.

Print a boolean value.

Print a character.

Print an array of characters.

Print an integer.

Print a long integer.

Print an object.

Print a string.

Terminate the current line by writing the line separator string.

Print a boolean and then terminate the line.

Print a character and then terminate the line.

Print an array of characters and then terminate the line.

Print an integer and then terminate the line.

Print a long and then terminate the line.

Print an Object and then terminate the line.

Print a String and then terminate the line.
Constructors

PrintStream(OutputStream)

public PrintStream(OutputStream out)

Create a new print stream. This stream will not flush automatically.

Parameters:

out - The output stream to which values and objects will be printed

Methods

checkError()

public boolean checkError()

Flush the stream and check its error state. The internal error state is set to true when the underlying output stream throws an IOException, and when the setError method is invoked.

Returns: True if and only if this stream has encountered an IOException, or the setError method has been invoked

close()

public void close()

Close the stream. This is done by flushing the stream and then closing the underlying output stream.

Overrides: close() in class OutputStream
flush()

public void flush()

Flush the stream. This is done by writing any buffered output bytes to the underlying output stream and then flushing that stream.

Overrides: flush() in class OutputStream
See Also: flush()

print(boolean)

public void print(boolean b)

Print a boolean value. The string produced by \texttt{valueOf(boolean)} is translated into bytes according to the platform's default character encoding, and these bytes are written in exactly the manner of the write(int) method.

Parameters:
- b - The boolean to be printed

print(char)

public void print(char c)

Print a character. The character is translated into one or more bytes according to the platform's default character encoding, and these bytes are written in exactly the manner of the write(int) method.

Parameters:
- c - The char to be printed

print(char[])

public void print(char[] s)

Print an array of characters. The characters are converted into bytes according to the platform's default character encoding, and these bytes are written in exactly the manner of the write(int) method.

Parameters:
- s - The array of chars to be printed

Throws: NullPointerException - If s is null

print(int)

public void print(int i)

Print an integer. The string produced by \texttt{valueOf(int)} is translated into bytes according to the platform's default character encoding, and these bytes are written in exactly the manner of the write(int) method.

Parameters:
- i - The int to be printed
See Also:  tostring(int)

print(long)

public void print(long l)

Print a long integer. The string produced by \texttt{valueOf(long)} is translated into bytes according to the platform's default character encoding, and these bytes are written in exactly the manner of the \texttt{write(int)} method.

Parameters:

\hspace{1em} l - The long to be printed

See Also:  tostring(long)

print(Object)

public void print(Object obj)

Print an object. The string produced by the \texttt{valueOf(Object)} method is translated into bytes according to the platform's default character encoding, and these bytes are written in exactly the manner of the \texttt{write(int)} method.

Parameters:

\hspace{1em} obj - The Object to be printed

See Also:  toString()

print(String)

public void print(String s)

Print a string. If the argument is null then the string "null" is printed. Otherwise, the string's characters are converted into bytes according to the platform's default character encoding, and these bytes are written in exactly the manner of the \texttt{write(int)} method.

Parameters:

\hspace{1em} s - The String to be printed

println()

public void println()

Terminate the current line by writing the line separator string. The line separator string is defined by the system property \texttt{line.separator}, and is not necessarily a single newline character ('\n').

println(boolean)

public void println(boolean x)

Print a boolean and then terminate the line. This method behaves as though it invokes \texttt{print(boolean)} and then \texttt{println()}.  

Parameters:

\hspace{1em} x - The boolean to be printed
println(char)

    public void println(char x)

Print a character and then terminate the line. This method behaves as though it invokes print(char) and then println().

Parameters:
    x - The char to be printed.

println(char[])

    public void println(char[] x)

Print an array of characters and then terminate the line. This method behaves as though it invokes print(char[]) and then println().

Parameters:
    x - an array of chars to print.

println(int)

    public void println(int x)

Print an integer and then terminate the line. This method behaves as though it invokes print(int) and then println().

Parameters:
    x - The int to be printed.

println(long)

    public void println(long x)

Print a long and then terminate the line. This method behaves as though it invokes print(long) and then println().

Parameters:
    x - a long to be printed.

println(Object)

    public void println(Object x)

Print an Object and then terminate the line. This method behaves as though it invokes print(Object) and then println().

Parameters:
    x - The Object to be printed.

println(String)

    public void println(String x)
Print a String and then terminate the line. This method behaves as though it invokes `println()` and then `print(String)`.

**Parameters:**
- `x` - The String to be printed.

### setError()

```java
protected void setError()
```

Set the error state of the stream to `true`.

**Since:** JDK1.1

### write(byte[], int, int)

```java
public void write(byte[] buf, int off, int len)
```

Write `len` bytes from the specified byte array starting at offset `off` to this stream. If automatic flushing is enabled then the `flush` method will be invoked.

Note that the bytes will be written as given; to write characters that will be translated according to the platform's default character encoding, use the `print(char)` or `println(char)` methods.

**Overrides:** `write(byte[], int, int)` in class `OutputStream`

**Parameters:**
- `buf` - A byte array
- `off` - Offset from which to start taking bytes
- `len` - Number of bytes to write

### write(int)

```java
public void write(int b)
```

Write the specified byte to this stream. If the byte is a newline and automatic flushing is enabled then the `flush` method will be invoked.

Note that the byte is written as given; to write a character that will be translated according to the platform's default character encoding, use the `print(char)` or `println(char)` methods.

**Overrides:** `write(int)` in class `OutputStream`

**Parameters:**
- `b` - The byte to be written

**See Also:** `print(char), println(char)`
Reader
write(int)

java.io
Reader

Syntax
public abstract class Reader

Object
|--java.io.Reader

Direct Known Subclasses: InputStreamReader

Description
Abstract class for reading character streams. The only methods that a subclass must implement are read(char[], int, int) and close(). Most subclasses, however, will override some of the methods defined here in order to provide higher efficiency, additional functionality, or both.

Since: JDK1.1

See Also: InputStreamReader, Writer

Member Summary

<table>
<thead>
<tr>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>lock</td>
</tr>
</tbody>
</table>

The object used to synchronize operations on this stream.

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reader()</td>
</tr>
<tr>
<td>Reader(Object)</td>
</tr>
</tbody>
</table>

Create a new character-stream reader whose critical sections will synchronize on the reader itself.
Create a new character-stream reader whose critical sections will synchronize on the given object.

<table>
<thead>
<tr>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>close()</td>
</tr>
<tr>
<td>mark(int)</td>
</tr>
<tr>
<td>markSupported()</td>
</tr>
<tr>
<td>read()</td>
</tr>
<tr>
<td>read(char[])</td>
</tr>
<tr>
<td>read(char[], int, int)</td>
</tr>
<tr>
<td>ready()</td>
</tr>
<tr>
<td>reset()</td>
</tr>
<tr>
<td>skip(long)</td>
</tr>
</tbody>
</table>

Close the stream.
Mark the present position in the stream.
Tell whether this stream supports the mark() operation.
Read a single character.
Read characters into an array.
Read characters into a portion of an array.
Tell whether this stream is ready to be read.
Reset the stream.
Skip characters.
Fields

lock

protected Object lock

The object used to synchronize operations on this stream. For efficiency, a character-stream object may use an object other than itself to protect critical sections. A subclass should therefore use the object in this field rather than this or a synchronized method.

Constructors

Reader()

protected Reader()

Create a new character-stream reader whose critical sections will synchronize on the reader itself.

Reader(Object)

protected Reader(Object lock)

Create a new character-stream reader whose critical sections will synchronize on the given object.

Parameters:

lock - The Object to synchronize on.

Methods

close()

public abstract void close()

Close the stream. Once a stream has been closed, further read(), ready(), mark(), or reset() invocations will throw an IOException. Closing a previously-closed stream, however, has no effect.

Throws: IOException - If an I/O error occurs
public void mark(int readAheadLimit)

Mark the present position in the stream. Subsequent calls to reset() will attempt to reposition the stream to this point. Not all character-input streams support the mark() operation.

Parameters:
readAheadLimit - Limit on the number of characters that may be read while still preserving the mark. After reading this many characters, attempting to reset the stream may fail.

Throws: IOException - If the stream does not support mark(), or if some other I/O error occurs

public boolean markSupported()

tell whether this stream supports the mark() operation. The default implementation always returns false. Subclasses should override this method.

Returns: true if and only if this stream supports the mark operation.

public int read()

Read a single character. This method will block until a character is available, an I/O error occurs, or the end of the stream is reached.

Subclasses that intend to support efficient single-character input should override this method.

Returns: The character read, as an integer in the range 0 to 65535 (0x00-0xffff), or -1 if the end of the stream has been reached

Throws: IOException - If an I/O error occurs

public int read(char[] cbuf)

Read characters into an array. This method will block until some input is available, an I/O error occurs, or the end of the stream is reached.

Parameters:

cbuf - Destination buffer

Returns: The number of bytes read, or -1 if the end of the stream has been reached

Throws: IOException - If an I/O error occurs

public abstract int read(char[] cbuf, int off, int len)

Read characters into a portion of an array. This method will block until some input is available, an I/O error occurs, or the end of the stream is reached.

Parameters:
java.io

Reader

```java
public long skip(long n)
```  
Skip characters. This method will block until some characters are available, an I/O error occurs, or the end of the stream is reached.

**Parameters:**

- `n` - The number of characters to skip

**Returns:** The number of characters actually skipped

**Throws:**

- `IllegalArgumentException` - If `n` is negative.
- `IOException` - If an I/O error occurs
java.io

UnsupportedEncodingException

Syntax
public class UnsupportedEncodingException extends IOException

Object
    +-- Throwable
    |    +-- Exception
    |        +-- IOException
    |            +-- java.io.UnsupportedEncodingException

Description
The Character Encoding is not supported.

Since: JDK1.1

Member Summary

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>UnsupportedEncodingException()</td>
</tr>
<tr>
<td>Constructs an UnsupportedEncodingException without a detail message.</td>
</tr>
<tr>
<td>UnsupportedEncodingException(String)</td>
</tr>
<tr>
<td>Constructs an UnsupportedEncodingException with a detail message.</td>
</tr>
</tbody>
</table>

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
getClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
Constructs an UnsupportedEncodingException without a detail message.

**UnsupportedEncodingException**

```java
public UnsupportedEncodingException(String s)
```

Constructs an UnsupportedEncodingException with a detail message.

**Parameters:**
- `s` - Describes the reason for the exception.
UTFDataFormatException

Syntax
public class UTFDataFormatException extends IOException

Object
   +-- Throwable
   |    +-- Exception
   |       +-- IOException
   |               +-- java.io.UTFDataFormatException

Description
Signals that a malformed UTF-8 string has been read in a data input stream or by any class that implements the data input interface. See the writeUTF method for the format in which UTF-8 strings are read and written.

Since: JDK1.0

See Also: DataInput, readUTF(DataInput), IOException

Member Summary

Constructors
UTFDataFormatException() Constructs a UTFDataFormatException with null as its error detail message.
UTFDataFormatException(String) Constructs a UTFDataFormatException with the specified detail message.

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
getClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
UTFDataFormatException()

```java
public UTFDataFormatException()
 Constructs a UTFDataFormatException with null as its error detail message.
```

UTFDataFormatException(String)

```java
public UTFDataFormatException(String s)
 Constructs a UTFDataFormatException with the specified detail message. The string s can be retrieved later by the `getMessage()` method of class `java.lang.Throwable`.

 Parameters:
 s - the detail message.
```
java.io

Writer

Syntax

public abstract class Writer

Object

|-- java.io.Writer

Direct Known Subclasses: OutputStreamWriter

Description

Abstract class for writing to character streams. The only methods that a subclass must implement are write(char[], int, int), flush(), and close(). Most subclasses, however, will override some of the methods defined here in order to provide higher efficiency, additional functionality, or both.

Since: JDK1.1

See Also: Writer, OutputStreamWriter, Reader

<table>
<thead>
<tr>
<th>Member Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields</td>
</tr>
<tr>
<td>lock</td>
</tr>
</tbody>
</table>

| Constructors | Create a new character-stream writer whose critical sections will synchronize on the writer itself. |
| Writer() |
| Writer(Object) |

| Methods | Close the stream, flushing it first. |
| close() |
| flush() |
| write(char[]) |
| write(char[], int, int) |
| write(int) |
| write(String) |
| write(String, int, int) |
| write a string. |
| write a portion of a string. |
**Fields**

- **lock**
  - `protected Object lock`
  - The object used to synchronize operations on this stream. For efficiency, a character-stream object may use an object other than itself to protect critical sections. A subclass should therefore use the object in this field rather than `this` or a synchronized method.

**Constructors**

- **Writer()**
  - `protected Writer()`
  - Create a new character-stream writer whose critical sections will synchronize on the writer itself.

- **Writer(Object)**
  - `protected Writer(Object lock)`
  - Create a new character-stream writer whose critical sections will synchronize on the given object.
  
  **Parameters:**
  - `lock` - Object to synchronize on.

**Methods**

- **close()**
  - `public abstract void close()`
  - Close the stream, flushing it first. Once a stream has been closed, further `write()` or `flush()` invocations will cause an `IOException` to be thrown. Closing a previously-closed stream, however, has no effect.

  **Throws:** `IOException` - If an I/O error occurs
flush()

public abstract void flush()

Flush the stream. If the stream has saved any characters from the various write() methods in a buffer, write them immediately to their intended destination. Then, if that destination is another character or byte stream, flush it. Thus one flush() invocation will flush all the buffers in a chain of Writers andOutputStreams.

Throws: IOException - If an I/O error occurs

write(char[])

public void write(char[] cbuf)

Write an array of characters.

Parameters:
- cbuf - Array of characters to be written

Throws: IOException - If an I/O error occurs

write(char[], int, int)

public abstract void write(char[] cbuf, int off, int len)

Write a portion of an array of characters.

Parameters:
- cbuf - Array of characters
- off - Offset from which to start writing characters
- len - Number of characters to write

Throws: IOException - If an I/O error occurs

write(int)

public void write(int c)

Write a single character. The character to be written is contained in the 16 low-order bits of the given integer value; the 16 high-order bits are ignored.

Subclasses that intend to support efficient single-character output should override this method.

Parameters:
- c - int specifying a character to be written.

Throws: IOException - If an I/O error occurs

write(String)

public void write(String str)

Write a string.

Parameters:
- str - String to be written
throws: `IOException` - If an I/O error occurs

write(String, int, int)

```java
public void write(String str, int off, int len)
```

Write a portion of a string.

**Parameters:**
- `str` - A String
- `off` - Offset from which to start writing characters
- `len` - Number of characters to write

**Throws:** `IOException` - If an I/O error occurs
Writer
write(String, int, int)
Package
java.lang

Description
Provides classes that are fundamental to the design of the Java programming language.

Since: JDK 1.0

<table>
<thead>
<tr>
<th>Class Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Class Summary</strong></td>
</tr>
<tr>
<td><strong>Interfaces</strong></td>
</tr>
<tr>
<td><strong>Runnable</strong></td>
</tr>
<tr>
<td><strong>Classes</strong></td>
</tr>
<tr>
<td><strong>Boolean</strong></td>
</tr>
<tr>
<td><strong>Byte</strong></td>
</tr>
<tr>
<td><strong>Character</strong></td>
</tr>
<tr>
<td><strong>Class</strong></td>
</tr>
<tr>
<td><strong>Integer</strong></td>
</tr>
<tr>
<td><strong>Long</strong></td>
</tr>
<tr>
<td><strong>Math</strong></td>
</tr>
<tr>
<td><strong>Object</strong></td>
</tr>
<tr>
<td><strong>Runtime</strong></td>
</tr>
<tr>
<td><strong>Short</strong></td>
</tr>
<tr>
<td><strong>String</strong></td>
</tr>
<tr>
<td><strong>StringBuffer</strong></td>
</tr>
<tr>
<td><strong>System</strong></td>
</tr>
<tr>
<td><strong>Thread</strong></td>
</tr>
<tr>
<td><strong>Throwable</strong></td>
</tr>
<tr>
<td><strong>Exceptions</strong></td>
</tr>
<tr>
<td><strong>ArithmeticException</strong></td>
</tr>
<tr>
<td><strong>ArrayIndexOutOfBoundsException</strong></td>
</tr>
<tr>
<td><strong>ArrayStoreException</strong></td>
</tr>
<tr>
<td><strong>ClassCastException</strong></td>
</tr>
</tbody>
</table>
### Class Summary

<table>
<thead>
<tr>
<th>Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClassNotFoundException</td>
<td>Thrown when an application tries to load in a class through its string name using the <code>forName</code> method in class <code>Class</code> but no definition for the class with the specified name could be found.</td>
</tr>
<tr>
<td>Exception</td>
<td>The class <code>Exception</code> and its subclasses are a form of <code>Throwable</code> that indicates conditions that a reasonable application might want to catch.</td>
</tr>
<tr>
<td>IllegalAccessException</td>
<td>Thrown when an application tries to load in a class, but the currently executing method does not have access to the definition of the specified class, because the class is not public and in another package.</td>
</tr>
<tr>
<td>InvalidArgumentException</td>
<td>Thrown to indicate that a method has been passed an illegal or inappropriate argument.</td>
</tr>
<tr>
<td>IllegalStateException</td>
<td>Thrown to indicate that a thread has attempted to wait on an object's monitor or to notify other threads waiting on an object's monitor without owning the specified monitor.</td>
</tr>
<tr>
<td>IllegalThreadStateException</td>
<td>Thrown to indicate that a thread is not in an appropriate state for the requested operation.</td>
</tr>
<tr>
<td>IndexOutOfBoundsException</td>
<td>Thrown to indicate that an index of some sort (such as to an array, to a string, or to a vector) is out of range.</td>
</tr>
<tr>
<td>InstantiationException</td>
<td>Thrown when an application tries to create an instance of a class using the <code>newInstance</code> method in class <code>Class</code>, but the specified class object cannot be instantiated because it is an interface or is an abstract class.</td>
</tr>
<tr>
<td>InterruptedException</td>
<td>Thrown when a thread is waiting, sleeping, or otherwise paused for a long time and another thread interrupts it using the <code>interrupt</code> method in class <code>Thread</code>.</td>
</tr>
<tr>
<td>NegativeArraySizeException</td>
<td>Thrown if an application tries to create an array with negative size.</td>
</tr>
<tr>
<td>NullPointerException</td>
<td>Thrown when an application attempts to use <code>null</code> in a case where an object is required.</td>
</tr>
<tr>
<td>NumberFormatException</td>
<td>Thrown to indicate that the application has attempted to convert a string to one of the numeric types, but that the string does not have the appropriate format.</td>
</tr>
<tr>
<td>RuntimeException</td>
<td><code>RuntimeException</code> is the superclass of those exceptions that can be thrown during the normal operation of the Java Virtual Machine.</td>
</tr>
<tr>
<td>SecurityException</td>
<td>Thrown by the security manager to indicate a security violation.</td>
</tr>
<tr>
<td>StringIndexOutOfBoundsException</td>
<td>Thrown by the <code>charAt</code> method in class <code>String</code> and by other <code>String</code> methods to indicate that an index is either negative or greater than or equal to the size of the string.</td>
</tr>
<tr>
<td>Errors</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>An <code>Error</code> is a subclass of <code>Throwable</code> that indicates serious problems that a reasonable application should not try to catch.</td>
</tr>
<tr>
<td>OutOfMemoryError</td>
<td>Thrown when the Java Virtual Machine cannot allocate an object because it is out of memory, and no more memory could be made available by the garbage collector.</td>
</tr>
<tr>
<td>VirtualMachineError</td>
<td>Thrown to indicate that the Java Virtual Machine is broken or has run out of resources necessary for it to continue operating.</td>
</tr>
</tbody>
</table>
java.lang

ArithmeticException

Syntax
public class ArithmeticException extends RuntimeException

| Object | --- | Throwable | --- | Exception | --- | RuntimeException | --- | java.lang.ArithmeticException |

Description
Thrown when an exceptional arithmetic condition has occurred. For example, an integer "divide by zero" throws an instance of this class.

Since: JDK1.0

Member Summary

Constructors
| ArithmeticException() | Constructs an ArithmeticException with no detail message. |
| ArithmeticException(String) | Constructs an ArithmeticException with the specified detail message. |

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
class(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
ArithmeticException(java.lang)

Constructs an ArithmeticException with no detail message.

ArithmeticException(String)

public ArithmeticException(String s)

Constructs an ArithmeticException with the specified detail message.

Parameters:
- s - the detail message.
java.lang

ArrayIndexOutOfBoundsException

Syntax

```java
public class ArrayIndexOutOfBoundsException extends IndexOutOfBoundsException
```

Description

Thrown to indicate that an array has been accessed with an illegal index. The index is either negative or greater than or equal to the size of the array.

Since: JDK1.0

### Member Summary

<table>
<thead>
<tr>
<th>Constructors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArrayIndexOutOfBoundsException()</td>
<td>Constructs an ArrayIndexOutOfBoundsException with no detail message.</td>
</tr>
<tr>
<td>ArrayIndexOutOfBoundsException(int)</td>
<td>Constructs a new ArrayIndexOutOfBoundsException class with an argument indicating the illegal index.</td>
</tr>
<tr>
<td>ArrayIndexOutOfBoundsException(String)</td>
<td>Constructs an ArrayIndexOutOfBoundsException class with the specified detail message.</td>
</tr>
</tbody>
</table>

### Inherited Member Summary

Methods inherited from class `Throwable`:
- `getMessage()`, `toString()`, `printStackTrace()`

Methods inherited from class `Object`:
- `getClass()`, `hashCode()`, `equals(Object)`, `notify()`, `notifyAll()`, `wait(long)`, `wait(long, int)`, `wait()`

### Constructors
ArrayIndexOutOfBoundsException() javalang

public ArrayIndexOutOfBoundsException()

Constructs an ArrayIndexOutOfBoundsException with no detail message.

ArrayIndexOutOfBoundsException(int)

public ArrayIndexOutOfBoundsException(int index)

Constructs a new ArrayIndexOutOfBoundsException class with an argument indicating the illegal index.

Parameters:

index - the illegal index.

ArrayIndexOutOfBoundsException(String)

public ArrayIndexOutOfBoundsException(String s)

Constructs an ArrayIndexOutOfBoundsException class with the specified detail message.

Parameters:

s - the detail message.
java.lang

ArrayStoreException

Syntax

public class ArrayStoreException extends RuntimeException

Object
  +-- Throwable
      +-- Exception
          +-- RuntimeException
               +-- java.lang.ArrayStoreException

Description

Thrown to indicate that an attempt has been made to store the wrong type of object into an array of objects. For example, the following code generates an ArrayStoreException:

    Object x[] = new String[3];
    x[0] = new Integer(0);

Since: JDK 1.0

Member Summary

Constructors

ArrayStoreException()
  Constructs an ArrayStoreException with no detail message.

ArrayStoreException(String)
  Constructs an ArrayStoreException with the specified detail message.

Inherited Member Summary

Methods inherited from class Throwable

getMessage(), toString(), printStackTrace()

Methods inherited from class Object

generate(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
ArrayStoreException

public ArrayStoreException()

Constructs an ArrayStoreException with no detail message.

ArrayStoreException(String)

public ArrayStoreException(String s)

Constructs an ArrayStoreException with the specified detail message.

Parameters:

s - the detail message.
public final class Boolean

Object
|-- java.lang.Boolean

Description
The Boolean class wraps a value of the primitive type boolean in an object. An object of type Boolean contains a single field whose type is boolean.

Since: JDK1.0

Member Summary

Constructors

| Boolean(boolean) | Allocates a Boolean object representing the value argument. |

Methods

booleanValue()	Returns the value of this Boolean object as a boolean primitive.
equals(Object)	Returns true if and only if the argument is not null and is a Boolean object that represents the same boolean value as this object.
hashCode()	Returns a hash code for this Boolean object.
toString()	Returns a String object representing this Boolean's value.

Inherited Member Summary

Methods inherited from class Object

gClass(), notify(), notifyAll(), wait(long), wait(long, int), wait()
Methods

booleanValue()

```java
public boolean booleanValue()

Returns the value of this Boolean object as a boolean primitive.

Returns: the primitive boolean value of this object.
```

equals(Object)

```java
public boolean equals(Object obj)

Returns true if and only if the argument is not null and is a Boolean object that represents the same boolean value as this object.

Overrides: equals(Object) in class Object

Parameters:
obj - the object to compare with.

Returns: true if the Boolean objects represent the same value; false otherwise.
```

hashCode()

```java
public int hashCode()

Returns a hash code for this Boolean object.

Overrides: hashCode() in class Object

Returns: the integer 1231 if this object represents true; returns the integer 1237 if this object represents false.
```

toString()

```java
public String toString()

Returns a String object representing this Boolean's value. If this object represents the value true, a string equal to "true" is returned. Otherwise, a string equal to "false" is returned.

Overrides: toString() in class Object

Returns: a string representation of this object.
```
java.lang

**Byte**

**Syntax**
```
public final class Byte
```

```
Object
 --
 java.lang.Byte
```

**Description**
The Byte class is the standard wrapper for byte values.

**Since:** JDK1.1

### Member Summary

#### Fields
- `MAX_VALUE`
  - The maximum value a `Byte` can have.
- `MIN_VALUE`
  - The minimum value a `Byte` can have.

#### Constructors
- `Byte(byte)`
  - Constructs a `Byte` object initialized to the specified byte value.

#### Methods
- `byteValue()`
  - Returns the value of this `Byte` as a byte.
- `equals(Object)`
  - Compares this object to the specified object.
- `hashCode()`
  - Returns a hashcode for this `Byte`.
- `parseByte(String)`
  - Assuming the specified String represents a byte, returns that byte's value.
- `parseByte(String, int)`
  - Assuming the specified String represents a byte, returns that byte's value.
- `toString()`
  - Returns a String object representing this `Byte`'s value.

#### Inherited Member Summary

Methods inherited from class `Object`
- `getClass()`, `notify()`, `notifyAll()`, `wait(long)`, `wait(long, int)`, `wait()`

### Fields

- `MAX_VALUE`
public static final byte MAX_VALUE
The maximum value a Byte can have.

public static final byte MIN_VALUE
The minimum value a Byte can have.

Constructors

Byte(byte)

public Byte(byte value)
Constructs a Byte object initialized to the specified byte value.

Parameters:
value - the initial value of the Byte

Methods

byteValue()

public byte byteValue()
Returns the value of this Byte as a byte.

Returns: the value of this Byte as a byte.

equals(Object)

public boolean equals(Object obj)
Compares this object to the specified object.

Overrides: equals(Object) in class Object

Parameters:
obj - the object to compare with

Returns: true if the objects are the same; false otherwise.

hashCode()

public int hashCode()
Returns a hashcode for this Byte.

Overrides: hashCode() in class Object
parseByte(String)

`public static byte parseByte(String s)`

Assuming the specified String represents a byte, returns that byte's value. Throws an exception if the String cannot be parsed as a byte. The radix is assumed to be 10.

**Parameters:**
- `s` - the String containing the byte

**Returns:** the parsed value of the byte

**Throws:** `NumberFormatException` - If the string does not contain a parsable byte.

parseByte(String, int)

`public static byte parseByte(String s, int radix)`

Assuming the specified String represents a byte, returns that byte's value. Throws an exception if the String cannot be parsed as a byte.

**Parameters:**
- `s` - the String containing the byte
- `radix` - the radix to be used

**Returns:** the parsed value of the byte

**Throws:** `NumberFormatException` - If the String does not contain a parsable byte.

toString()

`public String toString()`

Returns a String object representing this Byte's value.

**Overrides:** `toString()` in class `Object`
Character

toString()

java.lang
Character

Syntax

public final class Character

Object
    +-- java.lang.Character

Description
The Character class wraps a value of the primitive type char in an object. An object of type Character contains a single field whose type is char.

In addition, this class provides several methods for determining the type of a character and converting characters from uppercase to lowercase and vice versa.

Since: JDK1.0

Member Summary

<table>
<thead>
<tr>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX_RADIX</td>
</tr>
<tr>
<td>MAX_VALUE</td>
</tr>
<tr>
<td>MIN_RADIX</td>
</tr>
<tr>
<td>MIN_VALUE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character(char)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>charValue()</td>
</tr>
<tr>
<td>digit(char, int)</td>
</tr>
<tr>
<td>equals(Object)</td>
</tr>
<tr>
<td>hashCode()</td>
</tr>
<tr>
<td>isDigit(char)</td>
</tr>
<tr>
<td>isLowerCase(char)</td>
</tr>
<tr>
<td>isUpperCase(char)</td>
</tr>
<tr>
<td>toLowerCase(char)</td>
</tr>
<tr>
<td>toString()</td>
</tr>
<tr>
<td>toUpperCase(char)</td>
</tr>
</tbody>
</table>
Fields

MAX_RADIX
public static final int MAX_RADIX
The maximum radix available for conversion to and from Strings.
See Also: toString(int, int), valueOf(String)

MAX_VALUE
public static final char MAX_VALUE
The constant value of this field is the largest value of type char.
Since: JDK1.0.2

MIN_RADIX
public static final int MIN_RADIX
The minimum radix available for conversion to and from Strings.
See Also: toString(int, int), valueOf(String)

MIN_VALUE
public static final char MIN_VALUE
The constant value of this field is the smallest value of type char.
Since: JDK1.0.2

Constructors

Character(char)
public Character(char value)
Constructs a Character object and initializes it so that it represents the primitive value argument.
Parameters:
value - value for the new Character object.
Methods

charValue()

public char charValue()

Returns the value of this Character object.

Returns: the primitive char value represented by this object.

digit(char, int)

public static int digit(char ch, int radix)

Returns the numeric value of the character ch in the specified radix.

Parameters:
   ch - the character to be converted.
   radix - the radix.

Returns: the numeric value represented by the character in the specified radix.

Since: JDK1.0

See Also: isDigit(char)

equals(Object)

public boolean equals(Object obj)

Compares this object against the specified object. The result is true if and only if the argument is not null and is a Character object that represents the same char value as this object.

Overrides: equals(Object) in class Object

Parameters:
   obj - the object to compare with.

Returns: true if the objects are the same; false otherwise.

hashCode()

public int hashCode()

Returns a hash code for this Character.

Overrides: hashCode() in class Object

Returns: a hash code value for this object.

isDigit(char)

public static boolean isDigit(char ch)

Determines if the specified character is a digit.

Parameters:
isLowerCase(char)

public static boolean isLowerCase(char ch)
Determines if the specified character is a lowercase character.

Parameters:
ch - the character to be tested.

Returns: true if the character is lowercase; false otherwise.
Since: JDK1.0

isUpperCase(char)

public static boolean isUpperCase(char ch)
Determines if the specified character is an uppercase character.

Parameters:
ch - the character to be tested.

Returns: true if the character is uppercase; false otherwise.
Since: 1.0
See Also: isLowerCase(char), toUpperCase(char)

toLowerCase(char)

public static char toLowerCase(char ch)
The given character is mapped to its lowercase equivalent; if the character has no lowercase equivalent, the character itself is returned.

Parameters:
ch - the character to be converted.

Returns: the lowercase equivalent of the character, if any; otherwise the character itself.
Since: JDK1.0
See Also: isLowerCase(char), isUpperCase(char), toUpperCase(char)

toString()

public String toString()
Returns a String object representing this character's value. Converts this Character object to a string. The result is a string whose length is 1. The string's sole component is the primitive char value represented by this object.

Overrides: toString() in class Object
toUpperCase(char)

public static char toUpperCase(char ch)

Converts the character argument to uppercase; if the character has no lowercase equivalent, the character itself is returned.

Parameters:
   ch - the character to be converted.

Returns:  the uppercase equivalent of the character, if any; otherwise the character itself.

Since:  JDK1.0

See Also:  isLowerCase(char), isUpperCase(char), toLowerCase(char)
java.lang

Class

Syntax

```java
public final class Class

 Object
 +--- java.lang.Class

```

Description

Instances of the class `Class` represent classes and interfaces in a running Java application. Every array also belongs to a class that is reflected as a `Class` object that is shared by all arrays with the same element type and number of dimensions.

`Class` has no public constructor. Instead `Class` objects are constructed automatically by the Java Virtual Machine as classes are loaded.

The following example uses a `Class` object to print the class name of an object:

```java
void printClassName(Object obj) {
 System.out.println("The class of " + obj + " is " + obj.getClass().getName());
}
```

Since: JDK1.0

### Member Summary

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>forName(String)</code></td>
<td>Returns the <code>Class</code> object associated with the class with the given string name.</td>
</tr>
<tr>
<td><code>getName()</code></td>
<td>Returns the fully-qualified name of the entity (class, interface, array class, primitive type, or void) represented by this <code>Class</code> object, as a <code>String</code>.</td>
</tr>
<tr>
<td><code>getResourceAsStream(String)</code></td>
<td>Finds a resource with a given name.</td>
</tr>
<tr>
<td><code>isArray()</code></td>
<td>Determines if this <code>Class</code> object represents an array class.</td>
</tr>
<tr>
<td><code>isAssignableFrom(Class)</code></td>
<td>Determines if the class or interface represented by this <code>Class</code> object is either the same as, or is a superclass or superinterface of, the class or interface represented by the specified <code>Class</code> parameter.</td>
</tr>
<tr>
<td><code>isInstance(Object)</code></td>
<td>Determines if the specified <code>Object</code> is assignment-compatible with the object represented by this <code>Class</code>.</td>
</tr>
<tr>
<td><code>isInterface()</code></td>
<td>Determines if the specified <code>Class</code> object represents an interface type.</td>
</tr>
<tr>
<td><code>newInstance()</code></td>
<td>Creates a new instance of a class.</td>
</tr>
<tr>
<td><code>toString()</code></td>
<td>Converts the object to a string.</td>
</tr>
</tbody>
</table>
Class java.lang

forName(String)

### Inherited Member Summary

Methods inherited from class **Object**
- getClass()
- hashCode()
- equals(Object)
- notify()
- notifyAll()
- wait(long)
- wait(long, int)
- wait()

### Methods

#### forName(String)

```java
public static native Class forName(String className)
```

Returns the `Class` object associated with the class with the given string name. Given the fully-qualified name for a class or interface, this method attempts to locate, load and link the class. If it succeeds, returns the `Class` object representing the class. If it fails, the method throws a `ClassNotFoundException`.

For example, the following code fragment returns the runtime `Class` descriptor for the class named `java.lang.Thread`:

```java
Class t = Class.forName("java.lang.Thread")
```

**Parameters:**
- `className` - the fully qualified name of the desired class.

**Returns:** the `Class` descriptor for the class with the specified name.

**Throws:** `ClassNotFoundException` - if the class could not be found.

**Since:** JDK1.0

#### getName()

```java
public native String getName()
```

Returns the fully-qualified name of the entity (class, interface, array class, primitive type, or void) represented by this `Class` object, as a `String`.

If this `Class` object represents a class of arrays, then the internal form of the name consists of the name of the element type in Java signature format, preceded by one or more "[" characters representing the depth of array nesting. Thus:

- `(new Object[3]).getClass().getName()` returns "]Ljava.lang.Object;"
- `(new int[3][4][5][6][7][8][9]).getClass().getName()` returns "[[[[[I]. The encoding of element type names is as follows:
### getResourceAsStream(String)

```java
public InputStream getResourceAsStream(String name)
```

Finds a resource with a given name. This method returns null if no resource with this name is found. The rules for searching resources associated with a given class are profile specific.

**Parameters:**
- `name` - name of the desired resource

**Returns:** a `java.io.InputStream` object.

**Since:** JDK1.1

### isArray()

```java
public native boolean isArray()
```

Determines if this `Class` object represents an array class.

**Returns:** true if this object represents an array class; false otherwise.

**Since:** JDK1.1

### isAssignableFrom(Class)

```java
public native boolean isAssignableFrom(Class cls)
```

Determines if the class or interface represented by this `Class` object is either the same as, or is a superclass or superinterface of, the class or interface represented by the specified `Class` parameter. It returns true if so; otherwise it returns false. If this `Class` object represents a primitive type, this method returns true if the specified `Class` parameter is exactly this `Class` object; otherwise it returns false.

Specifically, this method tests whether the type represented by the specified `Class` parameter can be converted to the type represented by this `Class` object via an identity conversion or via a widening reference conversion. See *The Java Language Specification*, sections 5.1.1 and 5.1.4, for details.

**Parameters:**
- `cls` - the `Class` object to be checked

**Returns:** the boolean value indicating whether objects of the type `cls` can be assigned to objects of this class

**Throws:** `NullPointerException` - if the specified `Class` parameter is null.

**Since:** JDK1.1
**isInstance(Object)**

```java
public native boolean isInstance(Object obj)
```

Determines if the specified `Object` is assignment-compatible with the object represented by this `Class`. This method is the dynamic equivalent of the Java language `instanceof` operator. The method returns `true` if the specified `Object` argument is non-null and can be cast to the reference type represented by this `Class` object without raising a `ClassCastException`. It returns `false` otherwise.

Specifically, if this `Class` object represents a declared class, this method returns `true` if the specified `Object` argument is an instance of the represented class (or of any of its subclasses); it returns `false` otherwise. If this `Class` object represents an array class, this method returns `true` if the specified `Object` argument can be converted to an object of the array class by an identity conversion or by a widening reference conversion; it returns `false` otherwise. If this `Class` object represents an interface, this method returns `true` if the class or any superclass of the specified `Object` argument implements this interface; it returns `false` otherwise. If this `Class` object represents a primitive type, this method returns `false`.

**Parameters:**
- `obj` - the object to check

**Returns:** true if `obj` is an instance of this class

**Since:** JDK1.1

---

**isInterface()**

```java
public native boolean isInterface()
```

Determines if the specified `Class` object represents an interface type.

**Returns:** true if this object represents an interface; `false` otherwise.

---

**newInstance()**

```java
public native Object newInstance()
```

Creates a new instance of a class.

**Returns:** a newly allocated instance of the class represented by this object. This is done exactly as if by a `new` expression with an empty argument list.

**Throws:** `IllegalAccessException` - if the class or initializer is not accessible.

- `InstantiationException` - if an application tries to instantiate an abstract class or an interface, or if the instantiation fails for some other reason.

**Since:** JDK1.0

---

**toString()**

```java
public String toString()
```

Converts the object to a string. The string representation is the string "class" or "interface", followed by a space, and then by the fully qualified name of the class in the format returned by `getName`. If this `Class` object represents a primitive type, this method returns the name of the primitive type. If this `Class` object represents `void` this method returns "void".
Overrides: `toString()` in class `Object`

Returns: a string representation of this class object.
ClassCastException

java.lang

ClassCastException

Syntax

public class ClassCastException extends RuntimeException

Object
  --- Throwable
  --- Exception
  --- RuntimeException
  --- java.lang.ClassCastException

Description

Thrown to indicate that the code has attempted to cast an object to a subclass of which it is not an instance. For example, the following code generates a ClassCastException:

```java
Object x = new Integer(0);
System.out.println((String)x);
```

Since: JDK1.0

Member Summary

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClassCastException()</td>
<td>Constructs a ClassCastException with no detail message.</td>
</tr>
<tr>
<td>ClassCastException(String)</td>
<td>Constructs a ClassCastException with the specified detail message.</td>
</tr>
</tbody>
</table>

Inherited Member Summary

Methods inherited from class Throwable
- getMessage(), toString(), printStackTrace()

Methods inherited from class Object
- getClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
ClassCastException()

public ClassCastException()

Constructs a ClassCastException with no detail message.

ClassCastException(String)

public ClassCastException(String s)

Constructs a ClassCastException with the specified detail message.

Parameters:

s - the detail message.
ClassNotFoundException

java.lang

ClassNotFoundException

Syntax

public class ClassNotFoundException extends Exception

Object
|-- Throwable
    |-- Exception
    |    |-- java.lang.ClassNotFoundException

Description

Thrown when an application tries to load in a class through its string name using the `forName` method in class `Class` but no definition for the class with the specified name could be found.

Since: JDK1.0

See Also: `forName(String)`

Member Summary

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClassNotFoundException()</td>
</tr>
<tr>
<td>ClassNotFoundException(String)</td>
</tr>
</tbody>
</table>

Inherited Member Summary

Methods inherited from class `Throwable`:
- `getMessage()`, `toString()`, `printStackTrace()`

Methods inherited from class `Object`:
- `getClass()`, `hashCode()`, `equals(Object)`, `notify()`, `notifyAll()`, `wait(long)`, `wait(long, int)`, `wait()`

Constructors

ClassNotFoundException()
java.lang

ClassNotFoundException

public ClassNotFoundException()

Constructs a ClassNotFoundException with no detail message.

public ClassNotFoundException(String)

Constructs a ClassNotFoundException with the specified detail message.

Parameters:

s - the detail message.
Error

Syntax
public class Error extends Throwable

Object
   +-- Throwable
       +-- java.lang.Error

Direct Known Subclasses: VirtualMachineError

Description
An Error is a subclass of Throwable that indicates serious problems that a reasonable application should not try to catch. Most such errors are abnormal conditions.

A method is not required to declare in its throws clause any subclasses of Error that might be thrown during the execution of the method but not caught, since these errors are abnormal conditions that should never occur.

Since: JDK1.0

Member Summary

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error()</td>
</tr>
<tr>
<td>Error(String)</td>
</tr>
</tbody>
</table>

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
getClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
public Error()
Constructs an Error with no specified detail message.

Error(String)

public Error(String s)
Constructs an Error with the specified detail message.

Parameters:
  s - the detail message.
java.lang
Exception

Syntax
public class Exception extends Throwable

Object
   ^--- Throwable
      |   ^--- java.lang.Exception

Direct Known Subclasses: ClassNotFoundException, IllegalAccessException, InstantiationException, InterruptedException, IOException, RuntimeException

Description
The class Exception and its subclasses are a form of Throwable that indicates conditions that a reasonable application might want to catch.

Since: JDK1.0

See Also: Error

Member Summary

Constructors

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exception()</td>
<td>Constructs an Exception with no specified detail message.</td>
</tr>
<tr>
<td>Exception(String)</td>
<td>Constructs an Exception with the specified detail message.</td>
</tr>
</tbody>
</table>

Inherited Member Summary

Methods inherited from class Throwable

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>getMessage(), toString(), printStackTrace()</td>
<td></td>
</tr>
</tbody>
</table>

Methods inherited from class Object

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>getClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()</td>
<td></td>
</tr>
</tbody>
</table>

Constructors
Exception()

    public Exception()

    Constructs an Exception with no specified detail message.

Exception(String)

    public Exception(String s)

    Constructs an Exception with the specified detail message.

    Parameters:
    s - the detail message.
IllegalAccessException

Syntax

```java
public class IllegalAccessException extends Exception
```

```
<table>
<thead>
<tr>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>+- Throwable</code></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
```

Description

Thrown when an application tries to load in a class, but the currently executing method does not have access to the definition of the specified class, because the class is not public and in another package.

An instance of this class can also be thrown when an application tries to create an instance of a class using the `newInstance` method in class `Class`, but the current method does not have access to the appropriate zero-argument constructor.

Since: JDK1.0

See Also: `forName(String)`, `newInstance()`

Member Summary

Constructors

- `IllegalAccessException()` Constructs an `IllegalAccessException` without a detail message.
- `IllegalAccessException(String)` Constructs an `IllegalAccessException` with a detail message.

Inherited Member Summary

Methods inherited from class `Throwable` `getMessage()`, `toString()`, `printStackTrace()`

Methods inherited from class `Object` `getClass()`, `hashCode()`, `equals(Object)`, `notify()`, `notifyAll()`, `wait(long)`, `wait(long, int)`, `wait()`
Constructors

**IllegalAccessException()**

```java
public IllegalAccessException()

Constructs an IllegalAccessException without a detail message.
```

**IllegalAccessException(String)**

```java
public IllegalAccessException(String s)

Constructs an IllegalAccessException with a detail message.

Parameters:
- s - the detail message.
```
IllegalArgumentException

public class IllegalArgumentException extends RuntimeException

Object
   +-- Throwable
      +-- Exception
         +-- RuntimeException
            +-- java.lang.IllegalArgumentException

Direct Known Subclasses: IllegalThreadStateException, NumberFormatException

Description
Thrown to indicate that a method has been passed an illegal or inappropriate argument.

Since: JDK1.0

See Also: setPriority(int)

Member Summary

Constructors

IllegalArgumentExcep-
tion()
Constructs an IllegalArgumentException with no detail message.

IllegalArgumentExcep-
tion(String)
Constructs an IllegalArgumentException with the specified detail message.

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
getClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
IllegalArgument Exception

IllegalArgumentException()

public IllegalArgumentException()

Constructs an IllegalArgumentException with no detail message.

IllegalArgumentException(String)

public IllegalArgumentException(String s)

Constructs an IllegalArgumentException with the specified detail message.

Parameters:

s - the detail message.
IllegalMonitorStateException

Syntax
public class IllegalMonitorStateException extends RuntimeException

Object
   +-- Throwable
       +-- Exception
           +-- RuntimeException
               +-- java.lang.IllegalMonitorStateException

Description
Thrown to indicate that a thread has attempted to wait on an object's monitor or to notify other threads waiting on an object's monitor without owning the specified monitor.

Since: JDK1.0

See Also: notify(), notifyAll(), wait(), wait(long), wait(long, int)

Member Summary

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IllegalMonitorStateException()</td>
<td>Constructs an IllegalMonitorStateException with no detail message.</td>
</tr>
<tr>
<td>IllegalMonitorStateException(String)</td>
<td>Constructs an IllegalMonitorStateException with the specified detail message.</td>
</tr>
</tbody>
</table>

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
getClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
IllegalMonitorStateException()

public IllegalMonitorStateException()

Constructs an IllegalMonitorStateException with no detail message.

IllegalMonitorStateException(String)

public IllegalMonitorStateException(String s)

Constructs an IllegalMonitorStateException with the specified detail message.

Parameters:

s - the detail message.
IllegalThreadStateException

Syntax
public class IllegalThreadStateException extends IllegalArgumentException

Object
  |--- Throwable
  |   |--- Exception
  |   |   |--- RuntimeException
  |   |   |   |--- IllegalArgumentException
  |   |--- java.lang.IllegalThreadStateException

Description
Thrown to indicate that a thread is not in an appropriate state for the requested operation. See, for example, the suspend and resume methods in class Thread.

Since:  JDK1.0

Member Summary

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>IllegalThreadStateException()</td>
</tr>
<tr>
<td>IllegalThreadStateException(String)</td>
</tr>
</tbody>
</table>

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
glass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
IllegalThreadStateException()

public IllegalThreadStateException()

Constructs an IllegalThreadStateException with no detail message.

IllegalThreadStateException(String)

public IllegalThreadStateException(String s)

Constructs an IllegalThreadStateException with the specified detail message.

Parameters:

s - the detail message.
IndexOutOfBoundsException

**Syntax**

```java
class IndexOutOfBoundsException extends RuntimeException
```

**Direct Known Subclasses:** ArrayIndexOutOfBoundsException, StringIndexOutOfBoundsException

**Description**

Thrown to indicate that an index of some sort (such as to an array, to a string, or to a vector) is out of range. Applications can subclass this class to indicate similar exceptions.

**Since:** JDK1.0

**Member Summary**

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>IndexOutOfBoundsException()</td>
</tr>
<tr>
<td>IndexOutOfBoundsException(String)</td>
</tr>
</tbody>
</table>

**Inherited Member Summary**

Methods inherited from class Throwable:
- getMessage(), toString(), printStackTrace()

Methods inherited from class Object:
- getClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
IndexOutOfBoundsException()  
public IndexOutOfBoundsException()  
Constructs an IndexOutOfBoundsException with no detail message.

IndexOutOfBoundsException(String)  
public IndexOutOfBoundsException(String s)  
Constructs an IndexOutOfBoundsException with the specified detail message.  

Parameters:  
  s - the detail message.
InstantiationException
InstantiationException()

java.lang
InstantiationException

Syntax
public class InstantiationException extends Exception

    Object
    +-- Throwable
        +-- Exception
            +-- java.lang.InstantiationException

Description
Thrown when an application tries to create an instance of a class using the newInstance method in class Class, but the specified class object cannot be instantiated because it is an interface or is an abstract class.

Since: JDK1.0

See Also: newInstance()

Member Summary

| Constructors | InstantiationException() | Constructs an InstantiationException with no detail message. |
|             | InstantiationException(String) | Constructs an InstantiationException with the specified detail message. |

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
getClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()


public InstantiationException()

Constructs an InstantiationException with no detail message.

InstantiationException(String)

public InstantiationException(String s)

Constructs an InstantiationException with the specified detail message.

Parameters:

s - the detail message.
The Integer class wraps a value of the primitive type `int` in an object. An object of type `Integer` contains a single field whose type is `int`.

In addition, this class provides several methods for converting an `int` to a `String` and a `String` to an `int`, as well as other constants and methods useful when dealing with an `int`.

**Since:** JDK1.0

### Member Summary

<table>
<thead>
<tr>
<th>Fields</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MAX_VALUE</code></td>
<td>The largest value of type <code>int</code>.</td>
</tr>
<tr>
<td><code>MIN_VALUE</code></td>
<td>The smallest value of type <code>int</code>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constructors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Integer(int)</code></td>
<td>Constructs a newly allocated <code>Integer</code> object that represents the primitive <code>int</code> argument.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>byteValue()</code></td>
<td>Returns the value of this Integer as a byte.</td>
</tr>
<tr>
<td><code>equals(Object)</code></td>
<td>Compares this object to the specified object.</td>
</tr>
<tr>
<td><code>hashCode()</code></td>
<td>Returns a hashcode for this Integer.</td>
</tr>
<tr>
<td><code>intValue()</code></td>
<td>Returns the value of this Integer as an int.</td>
</tr>
<tr>
<td><code>longValue()</code></td>
<td>Returns the value of this Integer as a long.</td>
</tr>
<tr>
<td><code>parseInt(String)</code></td>
<td>Parses the string argument as a signed decimal integer.</td>
</tr>
<tr>
<td><code>parseInt(String, int)</code></td>
<td>Parses the string argument as a signed integer in the radix specified by the second argument.</td>
</tr>
<tr>
<td><code>shortValue()</code></td>
<td>Returns the value of this Integer as a short.</td>
</tr>
<tr>
<td><code>toBinaryString(int)</code></td>
<td>Creates a string representation of the integer argument as an unsigned integer in base 2.</td>
</tr>
<tr>
<td><code>toHexString(int)</code></td>
<td>Creates a string representation of the integer argument as an unsigned integer in base 16.</td>
</tr>
<tr>
<td><code>toOctalString(int)</code></td>
<td>Creates a string representation of the integer argument as an unsigned integer in base 8.</td>
</tr>
<tr>
<td><code>toString()</code></td>
<td>Returns a String object representing this Integer's value.</td>
</tr>
<tr>
<td><code>toString(int)</code></td>
<td>Returns a new String object representing the specified integer.</td>
</tr>
<tr>
<td><code>toString(int, int)</code></td>
<td>Creates a string representation of the first argument in the radix specified by the second argument.</td>
</tr>
<tr>
<td><code>valueOf(String)</code></td>
<td>Returns a new Integer object initialized to the value of the specified String.</td>
</tr>
</tbody>
</table>
Fields

MAX_VALUE

public static final int MAX_VALUE

The largest value of type int. The constant value of this field is 2147483647.

MIN_VALUE

public static final int MIN_VALUE

The smallest value of type int. The constant value of this field is -2147483648.

Constructors

Integer(int)

public Integer(int value)

Constructs a newly allocated Integer object that represents the primitive int argument.

Parameters:

value - the value to be represented by the Integer.

Methods

byteValue()

public byte byteValue()

Returns the value of this Integer as a byte.
### equals(Object)

```java
public boolean equals(Object obj)
```

Compares this object to the specified object. The result is `true` if and only if the argument is not `null` and is an `Integer` object that contains the same `int` value as this object.

**Overrides:** `equals(Object)` in class `Object`

**Parameters:**
- `obj` - the object to compare with.

**Returns:** `true` if the objects are the same; `false` otherwise.

### hashCode()

```java
public int hashCode()
```

Returns a hashcode for this `Integer`.

**Overrides:** `hashCode()` in class `Object`

**Returns:** a hash code value for this object, equal to the primitive `int` value represented by this `Integer` object.

### intValue()

```java
public int intValue()
```

Returns the value of this `Integer` as an `int`.

**Returns:** the `int` value represented by this object.

### longValue()

```java
public long longValue()
```

Returns the value of this `Integer` as a `long`.

**Returns:** the `int` value represented by this object that is converted to type `long` and the result of the conversion is returned.

### parseInt(String)

```java
public static int parseInt(String s)
```

 Parses the string argument as a signed decimal integer. The characters in the string must all be decimal digits, except that the first character may be an ASCII minus sign ` '-' ` (`'\u002d'`) to indicate a negative value. The resulting integer value is returned, exactly as if the argument and the radix 10 were given as arguments to the `parseInt(String, int)` method.

**Parameters:**
- `s` - a string.
Returns: the integer represented by the argument in decimal.

Throws: `NumberFormatException` - if the string does not contain a parsable integer.

### parseInt(String, int)

```java
public static int parseInt(String s, int radix)
```

Parses the string argument as a signed integer in the radix specified by the second argument. The characters in the string must all be digits of the specified radix (as determined by whether `digit(char, int)` returns a nonnegative value), except that the first character may be an ASCII minus sign `'-` (`'\u002d'`) to indicate a negative value. The resulting integer value is returned.

An exception of type `NumberFormatException` is thrown if any of the following situations occurs:

- The first argument is `null` or is a string of length zero.
- The radix is either smaller than `MIN_RADIX` or larger than `MAX_RADIX`.
- Any character of the string is not a digit of the specified radix, except that the first character may be a minus sign `'-'` (`'\u002d'`) provided that the string is longer than length 1.
- The integer value represented by the string is not a value of type `int`.

Examples:

```
parsingInt("0", 10) returns 0
parseInt("473", 10) returns 473
parseInt("-0", 10) returns 0
parseInt("-FF", 16) returns -255
parseInt("1100110", 2) returns 102
parseInt("2147483647", 10) returns 2147483647
parseInt("-2147483648", 10) returns -2147483648
parseInt("2147483648", 10) throws a NumberFormatException
parseInt("99", 8) throws a NumberFormatException
parseInt("Kona", 10) throws a NumberFormatException
parseInt("Kona", 27) returns 411787
```

Parameters:

- `s` - the `String` containing the integer.
- `radix` - the radix to be used.

Returns: the integer represented by the string argument in the specified radix.

Throws: `NumberFormatException` - if the string does not contain a parsable integer.

### shortValue()

```java
public short shortValue()
```

Returns the value of this `Integer` as a short.

Returns: the value of this `Integer` as a short.

Since: JDK1.1

### toBinaryString(int)

```java
public static String toBinaryString(int i)
```

Creates a string representation of the integer argument as an unsigned integer in base 2.
The unsigned integer value is the argument plus $2^{32}$ if the argument is negative; otherwise, it is equal to the argument. This value is converted to a string of ASCII digits in binary (base 2) with no extra leading 0s. If the unsigned magnitude is zero, it is represented by a single zero character '0' (\'\&\#92;\u0030\'); otherwise, the first character of the representation of the unsigned magnitude will not be the zero character. The characters '0' (\'\&\#92;\u0030\') and '1' (\'\&\#92;\u0031\') are used as binary digits.

Parameters:
- \textit{i} - an integer.

Returns: the string representation of the unsigned integer value represented by the argument in binary (base 2).

Since: JDK1.0.2

---

public static \texttt{String} toHexString(int \textit{i})

Creates a string representation of the integer argument as an unsigned integer in base 16.

The unsigned integer value is the argument plus $2^{32}$ if the argument is negative; otherwise, it is equal to the argument. This value is converted to a string of ASCII digits in hexadecimal (base 16) with no extra leading 0s. If the unsigned magnitude is zero, it is represented by a single zero character '0' (\'\&\#92;\u0030\'); otherwise, the first character of the representation of the unsigned magnitude will not be the zero character. The following characters are used as hexadecimal digits:

\texttt{0123456789abcdef}

These are the characters '\&\#92;\u0030' through '\&\#92;\u0039' and '\u\0039' through '\&\#92;\u0066'.

Parameters:
- \textit{i} - an integer.

Returns: the string representation of the unsigned integer value represented by the argument in hexadecimal (base 16).

Since: JDK1.0.2

---

public static \texttt{String} toOctalString(int \textit{i})

Creates a string representation of the integer argument as an unsigned integer in base 8.

The unsigned integer value is the argument plus $2^{32}$ if the argument is negative; otherwise, it is equal to the argument. This value is converted to a string of ASCII digits in octal (base 8) with no extra leading 0s.

If the unsigned magnitude is zero, it is represented by a single zero character '0' (\'\&\#92;\u0030\'); otherwise, the first character of the representation of the unsigned magnitude will not be the zero character. The octal digits are:

\texttt{01234567}

These are the characters '\&\#92;\u0030' through '\&\#92;\u0037'.

Parameters:
- \textit{i} - an integer
toString()

```java
public String toString()
```

Returns a String object representing this Integer's value. The value is converted to signed decimal representation and returned as a string, exactly as if the integer value were given as an argument to the `toString(int)` method.

Overrides: `toString()` in class `Object`

Returns: a string representation of the value of this object in base 10.

toString(int)

```java
public static String toString(int i)
```

Returns a new String object representing the specified integer. The argument is converted to signed decimal representation and returned as a string, exactly as if the argument and radix 10 were given as arguments to the `toString(int, int)` method.

Parameters:
- `i` - an integer to be converted.

Returns: a string representation of the argument in base 10.

toString(int, int)

```java
public static String toString(int i, int radix)
```

Creates a string representation of the first argument in the radix specified by the second argument.

If the radix is smaller than `Character.MIN_RADIX` or larger than `Character.MAX_RADIX`, then the radix 10 is used instead.

If the first argument is negative, the first element of the result is the ASCII minus character '-' ('\u002d'). If the first argument is not negative, no sign character appears in the result.

The remaining characters of the result represent the magnitude of the first argument. If the magnitude is zero, it is represented by a single zero character '0' ('\u0030'); otherwise, the first character of the representation of the magnitude will not be the zero character. The following ASCII characters are used as digits:

```
0123456789abcdefghijklmnopqrstuvwxyz
```

These are '\u0030' through '\u0039' and '\u0061' through '\u007a'. If the radix is N, then the first N of these characters are used as radix-N digits in the order shown. Thus, the digits for hexadecimal (radix 16) are

```
0123456789abcdef
```

Parameters:
- `i` - an integer.
valueOf(String)

public static Integer valueOf(String s)

Returns a new Integer object initialized to the value of the specified String. The argument is interpreted as representing a signed decimal integer, exactly as if the argument were given to the `parseInt(String)` method. The result is an `Integer` object that represents the integer value specified by the string.

In other words, this method returns an `Integer` object equal to the value of:

new Integer(Integer.parseInt(s))

Parameters:
s - the string to be parsed.

Returns: a newly constructed `Integer` initialized to the value represented by the string argument.

Throws: `NumberFormatException` - if the string cannot be parsed as an integer.

valueOf(String, int)

public static Integer valueOf(String s, int radix)

Returns a new Integer object initialized to the value of the specified String. The first argument is interpreted as representing a signed integer in the radix specified by the second argument, exactly as if the arguments were given to the `parseInt(String, int)` method. The result is an `Integer` object that represents the integer value specified by the string.

In other words, this method returns an `Integer` object equal to the value of:

new Integer(Integer.parseInt(s, radix))

Parameters:
s - the string to be parsed.

radix - the radix of the integer represented by string s

Returns: a newly constructed `Integer` initialized to the value represented by the string argument in the specified radix.

Throws: `NumberFormatException` - if the String cannot be parsed as an int.
java.lang

InterruptedException

Syntax
public class InterruptedException extends Exception

Object
   +--- Throwable
       +--- Exception
           +--- java.lang.InterruptedException

Description
Thrown when a thread is waiting, sleeping, or otherwise paused for a long time and another thread interrupts it using the interrupt method in class Thread.

Since: JDK1.0

See Also: wait(), wait(long), wait(long, int), sleep(long)

Member Summary

Constructors
InterruptedException()
Constructs an InterruptedException with no detail message.

InterruptedException(String)
Constructs an InterruptedException with the specified detail message.

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
class(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
InterruptedException

InterruptedException(String)

    public InterruptedException()
    Constructs an InterruptedException with no detail message.

InterruptedException(String)

    public InterruptedException(String s)
    Constructs an InterruptedException with the specified detail message.

Parameters:
    s - the detail message.
**Long**

**Syntax**
```
public final class Long
```

**Description**
The `Long` class wraps a value of the primitive type `long` in an object. An object of type `Long` contains a single field whose type is `long`.

In addition, this class provides several methods for converting a `long` to a `String` and a `String` to a `long`, as well as other constants and methods useful when dealing with a `long`.

**Since:** JDK1.0

### Member Summary

<table>
<thead>
<tr>
<th>Fields</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MAX_VALUE</strong></td>
<td>The largest value of type <code>long</code></td>
</tr>
<tr>
<td><strong>MIN_VALUE</strong></td>
<td>The smallest value of type <code>long</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constructors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Long(long)</code></td>
<td>Constructs a newly allocated <code>Long</code> object that represents the primitive <code>long</code> argument</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>equals(Object)</code></td>
<td>Compares this object against the specified object.</td>
</tr>
<tr>
<td><code>hashCode()</code></td>
<td>Computes a hashcode for this <code>Long</code>.</td>
</tr>
<tr>
<td><code>longValue()</code></td>
<td>Returns the value of this <code>Long</code> as a <code>long</code> value.</td>
</tr>
<tr>
<td><code>parseLong(String)</code></td>
<td>Parses the string argument as a signed decimal <code>long</code>.</td>
</tr>
<tr>
<td><code>parseLong(String, int)</code></td>
<td>Parses the string argument as a signed <code>long</code> in the radix specified by the second argument.</td>
</tr>
<tr>
<td><code>toString()</code></td>
<td>Returns a <code>String</code> object representing this <code>Long</code>'s value.</td>
</tr>
<tr>
<td><code>toString(long)</code></td>
<td>Returns a new <code>String</code> object representing the specified integer.</td>
</tr>
<tr>
<td><code>toString(long, int)</code></td>
<td>Creates a string representation of the first argument in the radix specified by the second argument.</td>
</tr>
</tbody>
</table>

### Inherited Member Summary

Methods inherited from class `Object`:
```
geclass(), notify(), notifyAll(), wait(long), wait(long, int), wait()
```
Fields

MAX_VALUE

    public static final long MAX_VALUE
    The largest value of type long.

MIN_VALUE

    public static final long MIN_VALUE
    The smallest value of type long.

Constructors

Long(long)

    public Long(long value)
    Constructs a newly allocated Long object that represents the primitive long argument.
    Parameters:
    value - the value to be represented by the Long object.

Methods

equals(Object)

    public boolean equals(Object obj)
    Compares this object against the specified object. The result is true if and only if the argument is not null and is a Long object that contains the same long value as this object.
    Overrides: equals(Object), in class Object
    Parameters:
    obj - the object to compare with.
    Returns: true if the objects are the same; false otherwise.

hashCode()

    public int hashCode()
    Computes a hashcode for this Long. The result is the exclusive OR of the two halves of the primitive long value represented by this Long object. That is, the hashcode is the value of the expression:
java.lang

Long

(longValue() ^ (longValue() >>> 32))

Overrides: hashCode() in class Object

Returns: a hash code value for this object.

longValue()

public long longValue()

Returns the value of this Long as a long value.

Returns: the long value represented by this object.

parseLong(String)

public static long parseLong(String s)

Parses the string argument as a signed decimal long. The characters in the string must all be decimal digits, except that the first character may be an ASCII minus sign '-' ('\u002d') to indicate a negative value. The resulting long value is returned, exactly as if the argument and the radix 10 were given as arguments to the parseLong(String, int) method that takes two arguments.

Note that neither L nor l is permitted to appear at the end of the string as a type indicator, as would be permitted in Java programming language source code.

Parameters:
  s - a string.

Returns: the long represented by the argument in decimal.

Throws: NumberFormatException - if the string does not contain a parsable long.

parseLong(String, int)

public static long parseLong(String s, int radix)

Parses the string argument as a signed long in the radix specified by the second argument. The characters in the string must all be digits of the specified radix (as determined by whether Character.digit returns a nonnegative value), except that the first character may be an ASCII minus sign '-' ('\u002d') to indicate a negative value. The resulting long value is returned.

Note that neither L nor l is permitted to appear at the end of the string as a type indicator, as would be permitted in Java programming language source code - except that either L or l may appear as a digit for a radix greater than 22.

An exception of type NumberFormatException is thrown if any of the following situations occurs:

• The first argument is null or is a string of length zero.
• The radix is either smaller than MIN_RADIX or larger than MAX_RADIX.
• The first character of the string is not a digit of the specified radix and is not a minus sign '-' ('\u002d').
• The first character of the string is a minus sign and the string is of length 1.
• Any character of the string after the first is not a digit of the specified radix.
• The integer value represented by the string cannot be represented as a value of type long.

Examples:
**Long**

```java
toString()
```

```java
public String toString()

Returns a String object representing this Long's value. The long integer value represented by this Long object is converted to signed decimal representation and returned as a string, exactly as if the long value were given as an argument to the `toString(long)` method that takes one argument.

** Overrides:** toString() in class Object

** Returns:** a string representation of this object in base 10.

```java
toString(long)
```

```java
public static String toString(long i)

Returns a new String object representing the specified integer. The argument is converted to signed decimal representation and returned as a string, exactly as if the argument and the radix 10 were given as arguments to the `toString(long, int)` method that takes two arguments.

** Parameters:**

- i - a long to be converted.

** Returns:** a string representation of the argument in base 10.

```java
toString(long, int)
```

```java
public static String toString(long i, int radix)

Creates a string representation of the first argument in the radix specified by the second argument.

If the radix is smaller than Character.MIN_RADIX or larger than Character.MAX_RADIX, then the radix 10 is used instead.

If the first argument is negative, the first element of the result is the ASCII minus sign `-' (`\u002d`). If the first argument is not negative, no sign character appears in the result.

The remaining characters of the result represent the magnitude of the first argument. If the magnitude is zero, it is represented by a single zero character '0' (`\u0030`); otherwise, the first character of the representation of the magnitude will not be the zero character. The following ASCII characters are used as digits:

- 0-9
- A-Z
- a-z

Parameters:

- s - the String containing the long.
- radix - the radix to be used.

Returns: the long represented by the string argument in the specified radix.

Throws: NumberFormatException - if the string does not contain a parsable integer.
These are \texttt{'\0030'} through \texttt{'\0039'} and \texttt{'\0061'} through \texttt{'\007a'}.
If the radix is \textit{N}, then the first \textit{N} of these characters are used as radix-\textit{N} digits in the order shown. Thus, the
digits for hexadecimal (radix 16) are
0123456789abcdef.

Parameters:
- \texttt{i} - a long.

- \texttt{radix} - the radix.

Returns: a string representation of the argument in the specified radix.

See Also: \texttt{MAX_RADIX, MIN_RADIX}
The class `Math` contains methods for performing basic numeric operations.

Since: 1.3

Methods

- `abs(int)`
 - `public static int abs(int a)`
 - Returns the absolute value of an `int` value. If the argument is not negative, the argument is returned. If the argument is negative, the negation of the argument is returned.
 - Note that if the argument is equal to the value of `Integer.MIN_VALUE`, the most negative representable `int` value, the result is that same value, which is negative.
Parameters:
 a - an int value.
Returns: the absolute value of the argument.
See Also: MIN_VALUE

def abs(long):
 public static long abs(long a)

 Returns the absolute value of a long value. If the argument is not negative, the argument is returned. If the argument is negative, the negation of the argument is returned.

 Note that if the argument is equal to the value of Long.MIN_VALUE, the most negative representable long value, the result is that same value, which is negative.

 Parameters:
 a - a long value.
 Returns: the absolute value of the argument.
 See Also: MIN_VALUE

def max(int, int):
 public static int max(int a, int b)

 Returns the greater of two int values. That is, the result is the argument closer to the value of Integer.MAX_VALUE. If the arguments have the same value, the result is that same value.

 Parameters:
 a - an int value.
 b - an int value.
 Returns: the larger of a and b.
 See Also: MAX_VALUE

def max(long, long):
 public static long max(long a, long b)

 Returns the greater of two long values. That is, the result is the argument closer to the value of Long.MAX_VALUE. If the arguments have the same value, the result is that same value.

 Parameters:
 a - a long value.
 b - a long value.
 Returns: the larger of a and b.
 See Also: MAX_VALUE

def min(int, int):
 public static int min(int a, int b)
Math

min(long, long)

Returns the smaller of two int values. That is, the result is the argument closer to the value of Integer.MIN_VALUE. If the arguments have the same value, the result is that same value.

Parameters:
 a - an int value.
 b - an int value.

Returns: the smaller of a and b.

See Also: MIN_VALUE

min(long, long)

public static long min(long a, long b)

Returns the smaller of two long values. That is, the result is the argument closer to the value of Long.MIN_VALUE. If the arguments have the same value, the result is that same value.

Parameters:
 a - a long value.
 b - a long value.

Returns: the smaller of a and b.

See Also: MIN_VALUE
NegativeArraySizeException

Syntax
public class NegativeArraySizeException extends RuntimeException

Object
 +-- Throwable
 +-- Exception
 +-- RuntimeException
 +-- java.lang.NegativeArraySizeException

Description
Thrown if an application tries to create an array with negative size.

Since: JDK1.0

Member Summary

Constructors
NegativeArraySizeException()
Constructs a NegativeArraySizeException with no detail message.

NegativeArraySizeException(String)
Constructs a NegativeArraySizeException with the specified detail message.

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
class(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
NegativeArraySizeException(String)

Constructs a NegativeArraySizeException with no detail message.

NegativeArraySizeException(String)

public NegativeArraySizeException(String s)

Constructs a NegativeArraySizeException with the specified detail message.

Parameters:

s - the detail message.
java.lang

NullPointerException

Syntax

public class NullPointerException extends RuntimeException

Object
 `+- Throwable
 | `-- Exception
 | `-- RuntimeException
 | `-- java.lang.NullPointerException

Description

Thrown when an application attempts to use null in a case where an object is required. These include:

- Calling the instance method of a null object.
- Accessing or modifying the field of a null object.
- Taking the length of null as if it were an array.
- Accessing or modifying the slots of null as if it were an array.
- Throwing null as if it were a Throwable value.

Applications should throw instances of this class to indicate other illegal uses of the null object.

Since: JDK1.0

Member Summary

Constructors

- NullPointerException()
 Constructs a NullPointerException with no detail message.
- NullPointerException(String)
 Constructs a NullPointerException with the specified detail message.

Inherited Member Summary

Methods inherited from class Throwable

- getMessage(), toString(), printStackTrace()

Methods inherited from class Object

- getClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
Constructors

NullPointerException()

public NullPointerException()

Constructs a NullPointerException with no detail message.

NullPointerException(String)

public NullPointerException(String s)

Constructs a NullPointerException with the specified detail message.

Parameters:

s - the detail message.
java.lang

NumberFormatException

Syntax
public class NumberFormatException extends IllegalArgumentException

Description
Thrown to indicate that the application has attempted to convert a string to one of the numeric types, but that the string does not have the appropriate format.

Since: JDK1.0

See Also: toString()

Member Summary

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>NumberFormatException()</td>
</tr>
<tr>
<td>NumberFormatException(String)</td>
</tr>
</tbody>
</table>

Inherited Member Summary

<table>
<thead>
<tr>
<th>Methods inherited from class Throwable</th>
</tr>
</thead>
<tbody>
<tr>
<td>getMessage(), toString(), printStackTrace()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods inherited from class Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>getClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()</td>
</tr>
</tbody>
</table>

Constructors
NumberFormatException

NumberFormatException()

public NumberFormatException()

Constructs a NumberFormatException with no detail message.

NumberFormatException(String)

public NumberFormatException(String s)

Constructs a NumberFormatException with the specified detail message.

Parameters:

s - the detail message.
Object

Syntax

public class Object

Description

Class Object is the root of the class hierarchy. Every class has Object as a superclass. All objects, including arrays, implement the methods of this class.

Since: JDK1.0

See Also: Class

Member Summary

Constructors

Object()

Methods

equals(Object) Indicates whether some other object is "equal to" this one.
getClass() Returns the runtime class of an object.
hashCode() Returns a hash code value for the object.
notify() Wakes up a single thread that is waiting on this object's monitor.
notifyAll() Wakes up all threads that are waiting on this object's monitor.
toString() Returns a string representation of the object.
wait() Causes current thread to wait until another thread invokes the notify() method or the notifyAll() method for this object.
wait(long) Causes current thread to wait until either another thread invokes the notify() method or the notifyAll() method for this object, or a specified amount of time has elapsed.
wait(long, int) Causes current thread to wait until another thread invokes the notify() method or the notifyAll() method for this object, or some other thread interrupts the current thread, or a certain amount of real time has elapsed.

Constructors

Object()

 public Object()
Methods

equals(Object)

public boolean equals(Object obj)

Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation:

- It is reflexive: for any reference value x, x.equals(x) should return true.
- It is symmetric: for any reference values x and y, x.equals(y) should return true if and only if y.equals(x) returns true.
- It is transitive: for any reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.
- It is consistent: for any reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the object is modified.
- For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence relation on objects; that is, for any reference values x and y, this method returns true if and only if x and y refer to the same object (x==y has the value true).

Parameters:
- obj - the reference object with which to compare.

Returns: true if this object is the same as the obj argument; false otherwise.

See Also: hashCode(), Hashtable

gClass()

public final native Class gClass()

Returns the runtime class of an object. That Class object is the object that is locked by static synchronized methods of the represented class.

Returns: the object of type Class that represents the runtime class of the object.

hashCode()

public native int hashCode()

Returns a hash code value for the object. This method is supported for the benefit of hashtables such as those provided by java.util.Hashtable.

The general contract of hashCode is:

- Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must consistently return the same integer, provided no information used in equals comparisons on the object is modified. This integer need not remain consistent from one execution of an application to another execution of the same application.
- If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the two objects must produce the same integer result.
- It is not required that if two objects are unequal according to the equals(Object) method, then
calling the `hashCode` method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal objects may improve the performance of hash tables.

As much as is reasonably practical, the `hashCode` method defined by class `Object` does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the Java™ programming language.)

Returns: a hash code value for this object.

See Also: `equals(Object)`, `Hashtable`

notify()

```
public final native void notify()
```

Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the `wait` methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:

- By executing a synchronized instance method of that object.
- By executing the body of a `synchronized` statement that synchronizes on the object.
- For objects of type `Class`, by executing a synchronized static method of that class.

Only one thread at a time can own an object's monitor.

Throws: `IllegalMonitorStateException` - if the current thread is not the owner of this object's monitor.

See Also: `notifyAll()`, `wait()`

notifyAll()

```
public final native void notifyAll()
```

Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's monitor by calling one of the `wait` methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. See the `notify` method for a description of the ways in which a thread can become the owner of a monitor.

Throws: `IllegalMonitorStateException` - if the current thread is not the owner of this object's monitor.

See Also: `notify()`, `wait()`
toString()

```java
public String toString()
```

Returns a string representation of the object. In general, the `toString` method returns a string that "textually represents" this object. The result should be a concise but informative representation that is easy for a person to read. It is recommended that all subclasses override this method.

The `toString` method for class `Object` returns a string consisting of the name of the class of which the object is an instance, the at-sign character `@`, and the unsigned hexadecimal representation of the hash code of the object. In other words, this method returns a string equal to the value of:

```java
getClass().getName() + '@' + Integer.toHexString(hashCode())
```

Returns: a string representation of the object.

wait()

```java
public final void wait()
```

Causes current thread to wait until another thread invokes the `notify()` method or the `notifyAll()` method for this object. In other word's this method behaves exactly as if it simply performs the call `wait(0)`.

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until another thread notifies threads waiting on this object's monitor to wake up either through a call to the `notify` method or the `notifyAll` method. The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

This method should only be called by a thread that is the owner of this object's monitor. See the `notify` method for a description of the ways in which a thread can become the owner of a monitor.

Throws: `IllegalMonitorStateException` - if the current thread is not the owner of the object's monitor.

`InterruptedException` - if another thread has interrupted the current thread. The `interrupted` status of the current thread is cleared when this exception is thrown.

See Also: `notify()`, `notifyAll()`

wait(long)

```java
public final native void wait(long timeout)
```

Causes current thread to wait until either another thread invokes the `notify()` method or the `notifyAll()` method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor. This method causes the current thread (call it \(T \)) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread \(T \) becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:

- Some other thread invokes the `notify` method for this object and thread \(T \) happens to be arbitrarily chosen as the thread to be awakened.
- Some other thread invokes the `notifyAll` method for this object.
- The specified amount of real time has elapsed, more or less. If `timeout` is zero, however, then real
time is not taken into consideration and the thread simply waits until notified. The thread T is then removed from the wait set for this object and re-enabled for thread scheduling. It then competes in the usual manner with other threads for the right to synchronize on the object; once it has gained control of the object, all its synchronization claims on the object are restored to the status quo ante - that is, to the situation as of the time that the wait method was invoked. Thread T then returns from the invocation of the wait method. Thus, on return from the wait method, the synchronization state of the object and of thread T is exactly as it was when the wait method was invoked.

Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Parameters:
- timeout - the maximum time to wait in milliseconds.

Throws:
- IllegalArgumentException - if the value of timeout is negative.
- IllegalMonitorStateException - if the current thread is not the owner of the object's monitor.
- InterruptedException - if another thread has interrupted the current thread. The interrupted status of the current thread is cleared when this exception is thrown.

See Also: notify(), notifyAll()
wait(long, int)

 nanos - additional time, in nanoseconds range 0-999999.

Throws: IllegalArgumentException - if the value of timeout is negative or the value of nanos is not in the range 0-999999.

 IllegalMonitorStateException - if the current thread is not the owner of this object's monitor.

 InterruptedException - if another thread has interrupted the current thread. The interrupted status of the current thread is cleared when this exception is thrown.
java.lang

OutOfMemoryError

Syntax
public class OutOfMemoryError extends VirtualMachineError

<table>
<thead>
<tr>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throwable</td>
</tr>
<tr>
<td>Error</td>
</tr>
<tr>
<td>VirtualMachineError</td>
</tr>
<tr>
<td>java.lang.OutOfMemoryError</td>
</tr>
</tbody>
</table>

Description
Thrown when the Java Virtual Machine cannot allocate an object because it is out of memory, and no more memory could be made available by the garbage collector.

Since: JDK1.0

Member Summary

<table>
<thead>
<tr>
<th>Constructors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OutOfMemoryError()</td>
<td>Constructs an OutOfMemoryError with no detail message.</td>
</tr>
<tr>
<td>OutOfMemoryError(String)</td>
<td>Constructs an OutOfMemoryError with the specified detail message.</td>
</tr>
</tbody>
</table>

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
class(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
OutOfMemoryError java.lang

OutOfMemoryError(String)

Constructs an OutOfMemoryError with no detail message.

OutOfMemoryError(String)

public OutOfMemoryError(String s)

Constructs an OutOfMemoryError with the specified detail message.

Parameters:

s - the detail message.
Runnable

Syntax

```
public abstract interface Runnable
```

All Known Implementing Classes: Thread

Description

The Runnable interface should be implemented by any class whose instances are intended to be executed by a thread. The class must define a method of no arguments called run.

This interface is designed to provide a common protocol for objects that wish to execute code while they are active. For example, Runnable is implemented by class Thread. Being active simply means that a thread has been started and has not yet been stopped.

In addition, Runnable provides the means for a class to be active while not subclassing Thread. A class that implements Runnable can run without subclassing Thread by instantiating a Thread instance and passing itself in as the target. In most cases, the Runnable interface should be used if you are only planning to override the run() method and no other Thread methods. This is important because classes should not be subclassed unless the programmer intends on modifying or enhancing the fundamental behavior of the class.

Since: JDK1.0

See Also: Thread

Member Summary

<table>
<thead>
<tr>
<th>Methods</th>
<th>run()</th>
</tr>
</thead>
<tbody>
<tr>
<td>run()</td>
<td>When an object implementing interface Runnable is used to create a thread, starting the thread causes the object's run method to be called in that separately executing thread.</td>
</tr>
</tbody>
</table>

Methods

run()

```
public void run()
```

When an object implementing interface Runnable is used to create a thread, starting the thread causes the object's run method to be called in that separately executing thread.

The general contract of the method run is that it may take any action whatsoever.

See Also: run()
Runtime

Syntax

```java
public class Runtime
```

```
java.lang
    +--- java.lang.Runtime
```

Description

Every Java application has a single instance of class `Runtime` that allows the application to interface with the environment in which the application is running. The current runtime can be obtained from the `getRuntime` method.

An application cannot create its own instance of this class.

Since: JDK1.0

See Also: `getRuntime()`

Member Summary

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>exit(int)</code></td>
<td>Terminates the currently running Java application.</td>
</tr>
<tr>
<td><code>freeMemory()</code></td>
<td>Returns the amount of free memory in the system.</td>
</tr>
<tr>
<td><code>gc()</code></td>
<td>Runs the garbage collector.</td>
</tr>
<tr>
<td><code>getRuntime()</code></td>
<td>Returns the runtime object associated with the current Java application.</td>
</tr>
<tr>
<td><code>totalMemory()</code></td>
<td>Returns the total amount of memory in the Java Virtual Machine.</td>
</tr>
</tbody>
</table>

Inherited Member Summary

<table>
<thead>
<tr>
<th>Methods inherited from class <code>Object</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>getClass()</code>, <code>hashCode()</code>, <code>equals(Object)</code>, <code>toString()</code>, <code>notify()</code>, <code>notifyAll()</code>, <code>wait(long)</code>, <code>wait(long, int)</code>, <code>wait()</code></td>
</tr>
</tbody>
</table>

Methods

`exit(int)`

```java
public void exit(int status)
```
Terminates the currently running Java application. This method never returns normally.
The argument serves as a status code; by convention, a nonzero status code indicates abnormal termination.

Parameters:
- `status` - exit status.

Since: JDK1.0

freeMemory()

```java
public native long freeMemory()
```

Returns the amount of free memory in the system. Calling the `gc` method may result in increasing the value returned by `freeMemory`.

Returns: an approximation to the total amount of memory currently available for future allocated objects, measured in bytes.

gc()

```java
public native void gc()
```

Runs the garbage collector. Calling this method suggests that the Java Virtual Machine expend effort toward recycling unused objects in order to make the memory they currently occupy available for quick reuse.

When control returns from the method call, the Java Virtual Machine has made its best effort to recycle all discarded objects.

The name `gc` stands for "garbage collector". The Java Virtual Machine performs this recycling process automatically as needed, in a separate thread, even if the `gc` method is not invoked explicitly.

The method `gc()` is the conventional and convenient means of invoking this method.

getRuntime()

```java
public static Runtime getRuntime()
```

Returns the runtime object associated with the current Java application. Most of the methods of class `Runtime` are instance methods and must be invoked with respect to the current runtime object.

Returns: the `Runtime` object associated with the current Java application.

totalMemory()

```java
public native long totalMemory()
```

Returns the total amount of memory in the Java Virtual Machine. The value returned by this method may vary over time, depending on the host environment.

Note that the amount of memory required to hold an object of any given type may be implementation-dependent.

Returns: the total amount of memory currently available for current and future objects, measured in bytes.
RuntimeException

Syntax

```
public class RuntimeException extends Exception
```

```
Object
  |-- Throwable
    |-- Exception
    |     |-- java.lang.RuntimeException
```

Direct Known Subclasses: ArithmeticException, ArrayStoreException, ClassCastException, EmptyStackException, IllegalArgumentException, IllegalMonitorStateException, IndexOutOfBoundsException, NegativeArraySizeException, NoSuchElementException, NullPointerException, SecurityException

Description

RuntimeException is the superclass of those exceptions that can be thrown during the normal operation of the Java Virtual Machine.

A method is not required to declare in its throws clause any subclasses of RuntimeException that might be thrown during the execution of the method but not caught.

Since: JDK1.0

Member Summary

Constructors

- `RuntimeException()` Constructs a RuntimeException with no detail message.
- `RuntimeException(String)` Constructs a RuntimeException with the specified detail message.

Inherited Member Summary

Methods inherited from class Throwable:
- `getMessage()`, `toString()`, `printStackTrace()`

Methods inherited from class Object:
- `getClass()`, `hashCode()`, `equals(Object)`, `notify()`, `notifyAll()`, `wait(long)`, `wait(long, int)`, `wait()`
Constructors

RuntimeException()

```java
public RuntimeException()

Constructs a RuntimeException with no detail message.
```

RuntimeException(String)

```java
public RuntimeException(String s)

Constructs a RuntimeException with the specified detail message.

**Parameters:**

- `s` - the detail message.
SecurityException

Syntax
public class SecurityException extends RuntimeException

Object
  +-- Throwable
    +-- Exception
      +-- RuntimeException
        +-- java.lang.SecurityException

Description
Thrown by the security manager to indicate a security violation.

Since: JDK1.0

Member Summary

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>SecurityException()</td>
</tr>
<tr>
<td>SecurityException(String)</td>
</tr>
</tbody>
</table>

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
class(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()

Constructors

SecurityException()
Constructs a SecurityException with no detail message.

---

**SecurityException(String)**

```java
public SecurityException(String s)

Constructs a SecurityException with the specified detail message.

Parameters:
- s - the detail message.
```
Short

java.lang

Short

Syntax

public final class Short

Object

|--java.lang.Short

Description

The Short class is the standard wrapper for short values.

Since: JDK1.1

Member Summary

<table>
<thead>
<tr>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX_VALUE</td>
</tr>
<tr>
<td>MIN_VALUE</td>
</tr>
</tbody>
</table>

The maximum value a Short can have.
The minimum value a Short can have.

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short(\text{short})</td>
</tr>
</tbody>
</table>

Constructs a Short object initialized to the specified short value.

<table>
<thead>
<tr>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>equals(\text{Object})</td>
</tr>
<tr>
<td>hashCode()</td>
</tr>
<tr>
<td>parseShort(\text{String})</td>
</tr>
<tr>
<td>parseShort(\text{String, int})</td>
</tr>
<tr>
<td>shortValue()</td>
</tr>
<tr>
<td>toString()</td>
</tr>
</tbody>
</table>

Compares this object to the specified object.
Returns a hashcode for this Short.
Assuming the specified String represents a short, returns that short's value.
Assuming the specified String represents a short, returns that short's value.
Returns the value of this Short as a short.
Returns a String object representing this Short's value.

Inherited Member Summary

<table>
<thead>
<tr>
<th>Methods inherited from class Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>getClass(), notify(), notifyAll(), wait(long), wait(long, int), wait()</td>
</tr>
</tbody>
</table>

Fields

MAX_VALUE
public static final short MAX_VALUE
The maximum value a Short can have.

public static final short MIN_VALUE
The minimum value a Short can have.

Constructors

Short(short)

public Short(short value)
Constructs a Short object initialized to the specified short value.

Parameters:
value - the initial value of the Short

Methods

equals(Object)

public boolean equals(Object obj)
Compares this object to the specified object.

Overrides: equals(Object) in class Object

Parameters:
obj - the object to compare with

Returns: true if the objects are the same; false otherwise.

hashCode()

public int hashCode()
Returns a hashcode for this Short.

Overrides: hashCode() in class Object

parseShort(String)

public static short parseShort(String s)
Assuming the specified String represents a short, returns that short's value. Throws an exception if the String cannot be parsed as a short. The radix is assumed to be 10.
Short

parseShort(String, int)

**Parameters:**
- `s` - the String containing the short

**Returns:** short the value represented by the specified string

**Throws:** `NumberFormatException` - If the string does not contain a parsable short.

---

parseShort(String, int)

`public static short parseShort(String s, int radix)`

Assuming the specified String represents a short, returns that short's value. Throws an exception if the String cannot be parsed as a short.

**Parameters:**
- `s` - the String containing the short
- `radix` - the radix to be used

**Returns:** The short value represented by the specified string in the specified radix.

**Throws:** `NumberFormatException` - If the String does not contain a parsable short.

---

shortValue()

`public short shortValue()`

Returns the value of this Short as a short.

**Returns:** the value of this Short as a short.

---

toString()

`public String toString()`

Returns a String object representing this Short's value.

**Overrides:** `toString()` in class `Object`
java.lang

String

Syntax

```java
public final class String
```

Description

The `String` class represents character strings. All string literals in Java programs, such as "abc", are implemented as instances of this class.

Strings are constant; their values cannot be changed after they are created. String buffers support mutable strings. Because `String` objects are immutable they can be shared. For example:

```java
String str = "abc";
```

is equivalent to:

```java
char data[] = {'a', 'b', 'c'};
String str = new String(data);
```

Here are some more examples of how strings can be used:

```java
System.out.println("abc");
String cde = "cde"
System.out.println("abc" + cde);
String c = "abc".substring(2,3);
String d = cde.substring(1, 2);
```

The class `String` includes methods for examining individual characters of the sequence, for comparing strings, for searching strings, for extracting substrings, and for creating a copy of a string with all characters translated to uppercase or to lowercase.

The Java language provides special support for the string concatenation operator (+), and for conversion of other objects to strings. String concatenation is implemented through the `StringBuffer` class and its `append` method. String conversions are implemented through the method `toString`, defined by `Object` and inherited by all classes in Java. For additional information on string concatenation and conversion, see Gosling, Joy, and Steele, *The Java Language Specification*.

Since: JDK1.0

See Also: `toString()`, `StringBuffer`, `append(boolean)`, `append(char)`, `append(char[])`, `append(char[], int, int)`, `append(int)`, `append(long)`, `append(Object)`, `append(String)`

### Member Summary

#### Constructors
## Member Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>String()</code></td>
<td>Initializes a newly created <code>String</code> object so that it represents an empty character sequence.</td>
</tr>
<tr>
<td><code>String(byte[])</code></td>
<td>Constructs a new <code>String</code> by converting the specified array of bytes using the platform's default character encoding.</td>
</tr>
<tr>
<td><code>String(byte[], int, int)</code></td>
<td>Constructs a new <code>String</code> by converting the specified subarray of bytes using the platform's default character encoding.</td>
</tr>
<tr>
<td><code>String(byte[], int, String)</code></td>
<td>Constructs a new <code>String</code> by converting the specified subarray of bytes using the specified character encoding.</td>
</tr>
<tr>
<td><code>String(String)</code></td>
<td>Allocates a new <code>String</code> so that it represents the sequence of characters currently contained in the character array argument.</td>
</tr>
<tr>
<td><code>String(char[])</code></td>
<td>Allocates a new <code>String</code> that contains characters from a subarray of the character array argument.</td>
</tr>
<tr>
<td><code>String(char[], int, int)</code></td>
<td>Initializes a newly created <code>String</code> object so that it represents the same sequence of characters as the argument; in other words, the newly created string is a copy of the argument string.</td>
</tr>
<tr>
<td><code>String(StringBuffer)</code></td>
<td>Allocates a new string that contains the sequence of characters currently contained in the string buffer argument.</td>
</tr>
</tbody>
</table>

## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>charAt(int)</code></td>
<td>Returns the character at the specified index.</td>
</tr>
<tr>
<td><code>compareTo(String)</code></td>
<td>Compares two strings lexicographically.</td>
</tr>
<tr>
<td><code>concat(String)</code></td>
<td>Concatenates the specified string to the end of this string.</td>
</tr>
<tr>
<td><code>endsWith(String)</code></td>
<td>Tests if this string ends with the specified suffix.</td>
</tr>
<tr>
<td><code>equals(Object)</code></td>
<td>Compares this string to the specified object.</td>
</tr>
<tr>
<td><code>getBytes()</code></td>
<td>Converts this <code>String</code> into bytes according to the platform's default character encoding, storing the result into a new byte array.</td>
</tr>
<tr>
<td><code>getBytes(String)</code></td>
<td>Converts this <code>String</code> into bytes according to the specified character encoding, storing the result into a new byte array.</td>
</tr>
<tr>
<td><code>getChars(int, int, char[], int)</code></td>
<td>Copies characters from this string into the destination character array.</td>
</tr>
<tr>
<td><code>hashCode()</code></td>
<td>Returns a hashcode for this string.</td>
</tr>
<tr>
<td><code>indexOf(int)</code></td>
<td>Returns the index within this string of the first occurrence of the specified character.</td>
</tr>
<tr>
<td><code>indexOf(int, int)</code></td>
<td>Returns the index within this string of the first occurrence of the specified character, starting the search at the specified index.</td>
</tr>
<tr>
<td><code>indexOf(String)</code></td>
<td>Returns the index within this string of the first occurrence of the specified substring.</td>
</tr>
<tr>
<td><code>indexOf(String, int)</code></td>
<td>Returns the index within this string of the first occurrence of the specified substring, starting at the specified index.</td>
</tr>
<tr>
<td><code>lastIndexOf(int)</code></td>
<td>Returns the index within this string of the last occurrence of the specified character.</td>
</tr>
<tr>
<td><code>lastIndexOf(String, int)</code></td>
<td>Returns the index within this string of the last occurrence of the specified character, searching backward starting at the specified index.</td>
</tr>
<tr>
<td><code>length()</code></td>
<td>Returns the length of this string.</td>
</tr>
<tr>
<td><code>regionMatches(boolean, int, String, int, int)</code></td>
<td>Tests if two string regions are equal.</td>
</tr>
<tr>
<td><code>replace(char, char)</code></td>
<td>Returns a new string resulting from replacing all occurrences of <code>oldChar</code> in this string with <code>newChar</code>.</td>
</tr>
<tr>
<td><code>startsWith(String)</code></td>
<td>Tests if this string starts with the specified prefix.</td>
</tr>
<tr>
<td><code>startsWith(String, int)</code></td>
<td>Tests if this string starts with the specified prefix beginning a specified index.</td>
</tr>
<tr>
<td><code>substring(int)</code></td>
<td>Returns a new string that is a substring of this string.</td>
</tr>
<tr>
<td><code>substring(int, int)</code></td>
<td>Returns a new string that is a substring of this string.</td>
</tr>
<tr>
<td><code>toCharArray()</code></td>
<td>Converts this string to a new character array.</td>
</tr>
</tbody>
</table>
Constructors

**String()**

```
public String()
```

Initializes a newly created `String` object so that it represents an empty character sequence.

**String(byte[])**

```
public String(byte[] bytes)
```

Construct a new `String` by converting the specified array of bytes using the platform's default character encoding. The length of the new `String` is a function of the encoding, and hence may not be equal to the length of the byte array.

**Parameters:**

- `bytes` - The bytes to be converted into characters

**Since:** JDK1.1

**String(byte[], int, int)**

```
public String(byte[] bytes, int off, int len)
```

Construct a new `String` by converting the specified subarray of bytes using the platform's default character encoding. The length of the new `String` is a function of the encoding, and hence may not be equal to the length of the subarray.
String

String(byte[], int, int, String)

Parameters:
- bytes - The bytes to be converted into characters
- off - Index of the first byte to convert
- len - Number of bytes to convert

Since: JDK1.1

String(byte[], int, int, String)

public String(byte[] bytes, int off, int len, String enc)

Construct a new String by converting the specified subarray of bytes using the specified character encoding. The length of the new String is a function of the encoding, and hence may not be equal to the length of the subarray.

Parameters:
- bytes - The bytes to be converted into characters
- off - Index of the first byte to convert
- len - Number of bytes to convert
- enc - The name of a character encoding

Throws: UnsupportedEncodingException - If the named encoding is not supported

Since: JDK1.1

String(byte[], String)

public String(byte[] bytes, String enc)

Construct a new String by converting the specified array of bytes using the specified character encoding. The length of the new String is a function of the encoding, and hence may not be equal to the length of the byte array.

Parameters:
- bytes - The bytes to be converted into characters
- enc - The name of a supported character encoding

Throws: UnsupportedEncodingException - If the named encoding is not supported

Since: JDK1.1

String(char[])

public String(char[] value)

Allocates a new String so that it represents the sequence of characters currently contained in the character array argument. The contents of the character array are copied; subsequent modification of the character array does not affect the newly created string.

Parameters:
- value - the initial value of the string.

Throws: NullPointerException - if value is null.
String(char[], int, int)

public String(char[] value, int offset, int count)

Allocates a new String that contains characters from a subarray of the character array argument. The offset argument is the index of the first character of the subarray and the count argument specifies the length of the subarray. The contents of the subarray are copied; subsequent modification of the character array does not affect the newly created string.

Parameters:
  value - array that is the source of characters.
  offset - the initial offset.
  count - the length.

Throws:  IndexOutOfBoundsException - if the offset and count arguments index characters outside the bounds of the value array.
            NullPointerException - if value is null.

String(String)

public String(String value)

Initializes a newly created String object so that it represents the same sequence of characters as the argument; in other words, the newly created string is a copy of the argument string.

Parameters:
  value - a String.

String(StringBuffer)

public String(StringBuffer buffer)

Allocates a new string that contains the sequence of characters currently contained in the string buffer argument. The contents of the string buffer are copied; subsequent modification of the string buffer does not affect the newly created string.

Parameters:
  buffer - a StringBuffer.

Throws:  NullPointerException - If buffer is null.

Methods

catAt(int)

public native char charAt(int index)

Returns the character at the specified index. An index ranges from 0 to length() - 1. The first character of the sequence is at index 0, the next at index 1, and so on, as for array indexing.

Parameters:
index - the index of the character.

**Returns:** the character at the specified index of this string. The first character is at index 0.

**Throws:** `IndexOutOfBoundsException` - if the index argument is negative or not less than the length of this string.

---

### compareTo(String)

```java
public int compareTo(String anotherString)
```

Compares two strings lexicographically. The comparison is based on the Unicode value of each character in the strings. The character sequence represented by this `String` object is compared lexicographically to the character sequence represented by the argument string. The result is a negative integer if this `String` object lexicographically precedes the argument string. The result is a positive integer if this `String` object lexicographically follows the argument string. The result is zero if the strings are equal; `compareTo` returns 0 exactly when the `equals(Object)` method would return `true`.

This is the definition of lexicographic ordering. If two strings are different, then either they have different characters at some index that is a valid index for both strings, or their lengths are different, or both. If they have different characters at one or more index positions, let k be the smallest such index; then the string whose character at position k has the smaller value, as determined by using the `<` operator, lexicographically precedes the other string. In this case, `compareTo` returns the difference of the two character values at position k in the two string -- that is, the value:

```
this.charAt(k) - anotherString.charAt(k)
```

If there is no index position at which they differ, then the shorter string lexicographically precedes the longer string. In this case, `compareTo` returns the difference of the lengths of the strings -- that is, the value:

```
this.length() - anotherString.length()
```

**Parameters:**

- `anotherString` - the `String` to be compared.

**Returns:** the value 0 if the argument string is equal to this string; a value less than 0 if this string is lexicographically less than the string argument; and a value greater than 0 if this string is lexicographically greater than the string argument.

**Throws:** `NullPointerException` - if `anotherString` is `null`.

---

### concat(String)

```java
public String concat(String str)
```

Concatenates the specified string to the end of this string.

If the length of the argument string is 0, then this `String` object is returned. Otherwise, a new `String` object is created, representing a character sequence that is the concatenation of the character sequence represented by this `String` object and the character sequence represented by the argument string.

**Examples:**

```
"cares".concat("s") returns "caress"
"to".concat("get").concat("her") returns "together"
```

**Parameters:**
endsWith(String)

```java
public boolean endsWith(String suffix)
```

Tests if this string ends with the specified suffix.

**Parameters:**
- suffix - the suffix.

**Returns:** true if the character sequence represented by the argument is a suffix of the character sequence represented by this object; false otherwise. Note that the result will be true if the argument is the empty string or is equal to this String object as determined by the equals(Object) method.

**Throws:** NullPointerException - if suffix is null.

equals(Object)

```java
public native boolean equals(Object anObject)
```

Compares this string to the specified object. The result is true if and only if the argument is not null and is a String object that represents the same sequence of characters as this object.

**Overrides:** equals(Object) in class Object

**Parameters:**
- anObject - the object to compare this String against.

**Returns:** true if the String are equal; false otherwise.

**See Also:** compareTo(String)

getBytes()

```java
public byte[] getBytes()
```

Convert this String into bytes according to the platform's default character encoding, storing the result into a new byte array.

**Returns:** the resultant byte array.

**Since:** JDK1.1

getBytes(String)

```java
public byte[] getBytes(String enc)
```

Convert this String into bytes according to the specified character encoding, storing the result into a new byte array.

**Parameters:**
getChars

public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)

Copies characters from this string into the destination character array.

The first character to be copied is at index srcBegin; the last character to be copied is at index srcEnd-1 (thus the total number of characters to be copied is srcEnd-srcBegin). The characters are copied into the subarray of dst starting at index dstBegin and ending at index:

dstbegin + (srcEnd-srcBegin) - 1

Parameters:

srcBegin - index of the first character in the string to copy.
srcEnd - index after the last character in the string to copy.
dst - the destination array.
dstBegin - the start offset in the destination array.

Throws:  IndexOutOfBoundsException - If any of the following is true:
• srcBegin is negative.
• srcBegin is greater than srcEnd
• srcEnd is greater than the length of this string
• dstBegin is negative
• dstBegin+(srcEnd-srcBegin) is larger than dst.length

NullPointerException - if dst is null

hashCode

public int hashCode()

Returns a hashcode for this string. The hashcode for a String object is computed as

s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]

using int arithmetic, where s[i] is the ith character of the string, n is the length of the string, and ^ indicates exponentiation. (The hash value of the empty string is zero.)

Overrides: hashCode() in class Object

Returns: a hash code value for this object.

indexOf

public native int indexOf(int ch)
Returns the index within this string of the first occurrence of the specified character. If a character with value \texttt{ch} occurs in the character sequence represented by this \texttt{String} object, then the index of the first such occurrence is returned -- that is, the smallest value \texttt{k} such that:

\[
\text{this.charAt}(k) == \text{ch}
\]

is true. If no such character occurs in this string, then \texttt{-1} is returned.

**Parameters:**
- \texttt{ch} - a character.

**Returns:** the index of the first occurrence of the character in the character sequence represented by this object, or \texttt{-1} if the character does not occur.

---

**indexOf(int, int)**

```
public native int indexOf(int ch, int fromIndex)
```

Returns the index within this string of the first occurrence of the specified character, starting the search at the specified index.

If a character with value \texttt{ch} occurs in the character sequence represented by this \texttt{String} object at an index no smaller than \texttt{fromIndex}, then the index of the first such occurrence is returned--that is, the smallest value \texttt{k} such that:

\[
\text{(this.charAt}(k) == \text{ch}) \&\& (k >= \text{fromIndex})
\]

is true. If no such character occurs in this string at or after position \texttt{fromIndex}, then \texttt{-1} is returned.

There is no restriction on the value of \texttt{fromIndex}. If it is negative, it has the same effect as if it were zero: this entire string may be searched. If it is greater than the length of this string, it has the same effect as if it were equal to the length of this string: \texttt{-1} is returned.

**Parameters:**
- \texttt{ch} - a character.
- \texttt{fromIndex} - the index to start the search from.

**Returns:** the index of the first occurrence of the character in the character sequence represented by this object that is greater than or equal to \texttt{fromIndex}, or \texttt{-1} if the character does not occur.

---

**indexOf(String)**

```
public int indexOf(String str)
```

Returns the index within this string of the first occurrence of the specified substring. The integer returned is the smallest value \texttt{k} such that:

\[
\text{this.startsWith}(str, k)
\]

is true.

**Parameters:**
- \texttt{str} - any string.

**Returns:** if the string argument occurs as a substring within this object, then the index of the first character of the first such substring is returned; if it does not occur as a substring, \texttt{-1} is returned.

**Throws:** \texttt{NullPointerException} - if \texttt{str} is null.
indexOf(String, int)

public int indexOf(String str, int fromIndex)
Returns the index within this string of the first occurrence of the specified substring, starting at the specified index. The integer returned is the smallest value \( k \) such that:

\[
\text{this.startsWith}(str, k) \land (k \geq \text{fromIndex})
\]
is true.
There is no restriction on the value of \( \text{fromIndex} \). If it is negative, it has the same effect as if it were zero: this entire string may be searched. If it is greater than the length of this string, it has the same effect as if it were equal to the length of this string: \(-1\) is returned.

Parameters:
- \( \text{str} \) - the substring to search for.
- \( \text{fromIndex} \) - the index to start the search from.

Returns: If the string argument occurs as a substring within this object at a starting index no smaller than \( \text{fromIndex} \), then the index of the first character of the first such substring is returned. If it does not occur as a substring starting at \( \text{fromIndex} \) or beyond, \(-1\) is returned.

Throws: NullPointerException - if \( \text{str} \) is null

lastIndexOf(int)

public int lastIndexOf(int ch)
Returns the index within this string of the last occurrence of the specified character. That is, the index returned is the largest value \( k \) such that:

\[
\text{this.charAt}(k) = \text{ch}
\]
is true. The String is searched backwards starting at the last character.

Parameters:
- \( \text{ch} \) - a character.

Returns: the index of the last occurrence of the character in the character sequence represented by this object, or \(-1\) if the character does not occur.

lastIndexOf(int, int)

public int lastIndexOf(int ch, int fromIndex)
Returns the index within this string of the last occurrence of the specified character, searching backward starting at the specified index. That is, the index returned is the largest value \( k \) such that:

\[
\text{this.charAt}(k) = \text{ch} \land (k \leq \text{fromIndex})
\]
is true.

Parameters:
- \( \text{ch} \) - a character.
- \( \text{fromIndex} \) - the index to start the search from. There is no restriction on the value of \( \text{fromIndex} \). If it is greater than or equal to the length of this string, it has the same effect as if it were equal to one
less than the length of this string: this entire string may be searched. If it is negative, it has the same
effect as if it were -1: -1 is returned.

**Returns:** the index of the last occurrence of the character in the character sequence represented by this
object that is less than or equal to `fromIndex`, or -1 if the character does not occur before that point.

### length()

```java
public int length()
```

Returns the length of this string. The length is equal to the number of 16-bit Unicode characters in the
string.

**Returns:** the length of the sequence of characters represented by this object.

### regionMatches(boolean, int, String, int, int)

```java
public boolean regionMatches(boolean ignoreCase, int toffset, String other, int ooffset, int len)
```

Tests if two string regions are equal.

A substring of this `String` object is compared to a substring of the argument `other`. The result is `true`
if these substrings represent character sequences that are the same, ignoring case if and only if `ignoreCase`
is `true`. The substring of this `String` object to be compared begins at index `toffset` and has
length `len`. The substring of `other` to be compared begins at index `ooffset` and has length `len`. The
result is `false` if and only if at least one of the following is true:

- `toffset` is negative.
- `ooffset` is negative.
- `toffset+len` is greater than the length of this `String` object.
- `ooffset+len` is greater than the length of the other argument.
- There is some nonnegative integer `k` less than `len` such that:
  ```java
 this.charAt(toffset+k) != other.charAt(ooffset+k)
  ```
- `ignoreCase` is `true` and there is some nonnegative integer `k` less than `len` such that:
  ```java
 Character.toLowerCase(this.charAt(toffset+k)) != Character.toLowerCase(other.charAt(ooffset+k))
  ```
  and:
  ```java
 Character.toUpperCase(this.charAt(toffset+k)) != Character.toUpperCase(other.charAt(ooffset+k))
  ```

**Parameters:**

- `ignoreCase` - if `true`, ignore case when comparing characters.
- `toffset` - the starting offset of the subregion in this `String`.
- `other` - the `String` argument.
- `ooffset` - the starting offset of the subregion in the `String` argument.
- `len` - the number of characters to compare.

**Returns:** `true` if the specified subregion of this `String` matches the specified subregion of the `String`
argument; `false` otherwise. Whether the matching is exact or case insensitive depends on the
`ignoreCase` argument.
replace(char, char)

public String replace(char oldChar, char newChar)

Returns a new string resulting from replacing all occurrences of oldChar in this string with newChar. If the character oldChar does not occur in the character sequence represented by this String object, then a reference to this String object is returned. Otherwise, a new String object is created that represents a character sequence identical to the character sequence represented by this String object, except that every occurrence of oldChar is replaced by an occurrence of newChar.

Examples:
*mesquite in your cellar*.replace('e', 'o') returns "mosquito in your collar"
*the war of baronets*.replace('r', 'y') returns "the way of bayonets"
*sparring with a purple porpoise*.replace('p', 't') returns "starring with a turtle tortoise"
*JonL*.replace('q', 'x') returns "JonL" (no change)

Parameters:
oldChar - the old character.
newChar - the new character.

Returns: a string derived from this string by replacing every occurrence of oldChar with newChar.

startsWith(String)

public boolean startsWith(String prefix)

Tests if this string starts with the specified prefix.

Parameters:
prefix - the prefix.

Returns: true if the character sequence represented by the argument is a prefix of the character sequence represented by this string; false otherwise. Note also that true will be returned if the argument is an empty string or is equal to this String object as determined by the equals(Object) method.

Throws: NullPointerException - if prefix is null.

Since: JDK1.0

startsWith(String, int)

public boolean startsWith(String prefix, int toffset)

Tests if this string starts with the specified prefix beginning a specified index.

Parameters:
prefix - the prefix.
toffset - where to begin looking in the string.

Returns: true if the character sequence represented by the argument is a prefix of the substring of this object starting at index toffset; false otherwise. The result is false if toffset is negative or
greater than the length of this String object; otherwise the result is the same as the result of the expression

\[ \text{this.substring(toffset).startsWith(prefix)} \]

**Throws:**  
*NullPointerException* - if prefix is null.

---

### substring(int)

```java
public String substring(int beginIndex)
```

Returns a new string that is a substring of this string. The substring begins with the character at the specified index and extends to the end of this string.

**Examples:**

* "unhappy".substring(2) returns "happy"
* "Harbison".substring(3) returns "bison"
* "emptiness".substring(9) returns "" (an empty string)

**Parameters:**
- `beginIndex` - the beginning index, inclusive.

**Returns:**  
The specified substring.

**Throws:**  
* `IndexOutOfBoundsException` - if `beginIndex` is negative or larger than the length of this String object.

---

### substring(int, int)

```java
public String substring(int beginIndex, int endIndex)
```

Returns a new string that is a substring of this string. The substring begins at the specified `beginIndex` and extends to the character at index `endIndex - 1`. Thus the length of the substring is `endIndex - beginIndex`.

**Examples:**

* "hamburger".substring(4, 8) returns "urge"
* "smiles".substring(1, 5) returns "mile"

**Parameters:**
- `beginIndex` - the beginning index, inclusive.
- `endIndex` - the ending index, exclusive.

**Returns:**  
The specified substring.

**Throws:**  
* `IndexOutOfBoundsException` - if the `beginIndex` is negative, or `endIndex` is larger than the length of this String object, or `beginIndex` is larger than `endIndex`.

---

### toCharArray()

```java
public char[] toCharArray()
```

Converts this string to a new character array.

**Returns:**  
A newly allocated character array whose length is the length of this string and whose contents are initialized to contain the character sequence represented by this string.
String
toLowerCase()

toLowerCase()

public String toLowerCase()

Converts all of the characters in this String to lower case.

Returns: the String, converted to lowercase.

See Also: toLowerCase(char), toUpperCase()

toString()

public String toString()

This object (which is already a string!) is itself returned.

Overrides: toString() in class Object

Returns: the string itself.

toUpperCase()

public String toUpperCase()

Converts all of the characters in this String to upper case.

Returns: the String, converted to uppercase.

See Also: toLowerCase(char), toUpperCase()

trim()

public String trim()

Removes white space from both ends of this string.

If this String object represents an empty character sequence, or the first and last characters of character sequence represented by this String object both have codes greater than '\u0020' (the space character), then a reference to this String object is returned.

Otherwise, if there is no character with a code greater than '\u0020' in the string, then a new String object representing an empty string is created and returned.

Otherwise, let k be the index of the first character in the string whose code is greater than '\u0020', and let m be the index of the last character in the string whose code is greater than '\u0020'. A new String object is created, representing the substring of this string that begins with the character at index k and ends with the character at index m-that is, the result of this.substring(k, m+1).

This method may be used to trim whitespace from the beginning and end of a string; in fact, it trims all ASCII control characters as well.

Returns: this string, with white space removed from the front and end.

valueOf(boolean)

public static String valueOf(boolean b)

Returns the string representation of the boolean argument.
Parameters:
  b - a boolean.

Returns: if the argument is true, a string equal to "true" is returned; otherwise, a string equal to "false" is returned.

valueOf(char)

public static String valueOf(char c)

Returns the string representation of the char argument.

Parameters:
  c - a char.

Returns: a newly allocated string of length 1 containing as its single character the argument c.

valueOf(char[])

public static String valueOf(char[] data)

Returns the string representation of the char array argument. The contents of the character array are copied; subsequent modification of the character array does not affect the newly created string.

Parameters:
  data - a char array.

Returns: a newly allocated string representing the same sequence of characters contained in the character array argument.

valueOf(char[], int, int)

public static String valueOf(char[] data, int offset, int count)

Returns the string representation of a specific subarray of the char array argument.

The offset argument is the index of the first character of the subarray. The count argument specifies the length of the subarray. The contents of the subarray are copied; subsequent modification of the character array does not affect the newly created string.

Parameters:
  data - the character array.
  offset - the initial offset into the value of the String.
  count - the length of the value of the String.

Returns: a newly allocated string representing the sequence of characters contained in the subarray of the character array argument.

Throws: NullPointerException - if data is null.
  IndexOutOfBoundsException - if offset is negative, or count is negative, or offset+count is larger than data.length.

valueOf(int)

public static String valueOf(int i)
Returns the string representation of the int argument.
The representation is exactly the one returned by the Integer.toString method of one argument.

Parameters:
   i - an int.

Returns: a newly allocated string containing a string representation of the int argument.

See Also: `toString(int, int)`

---

Returns the string representation of the long argument.
The representation is exactly the one returned by the Long.toString method of one argument.

Parameters:
   l - a long.

Returns: a newly allocated string containing a string representation of the long argument.

See Also: `toString(long)`

---

Returns the string representation of the Object argument.

Parameters:
   obj - an Object.

Returns: if the argument is null, then a string equal to "null"; otherwise, the value of
   obj.toString() is returned.

See Also: `toString()`
java.lang

StringBuffer

Syntax

```java
public final class StringBuffer
```

Object

```java
--- java.lang.StringBuffer
```

Description

A string buffer implements a mutable sequence of characters. A string buffer is like a `String`, but can be modified. At any point in time it contains some particular sequence of characters, but the length and content of the sequence can be changed through certain method calls.

String buffers are safe for use by multiple threads. The methods are synchronized where necessary so that all the operations on any particular instance behave as if they occur in some serial order that is consistent with the order of the method calls made by each of the individual threads involved.

String buffers are used by the compiler to implement the binary string concatenation operator `+`. For example, the code:

```java
x = "a" + 4 + "c"
```

is compiled to the equivalent of:

```java
x = new StringBuffer().append("a").append(4).append("c")
 .toString()
```

which creates a new string buffer (initially empty), appends the string representation of each operand to the string buffer in turn, and then converts the contents of the string buffer to a string. Overall, this avoids creating many temporary strings.

The principal operations on a `StringBuffer` are the `append` and `insert` methods, which are overloaded so as to accept data of any type. Each effectively converts a given datum to a string and then appends or inserts the characters of that string to the string buffer. The `append` method always adds these characters at the end of the buffer; the `insert` method adds the characters at a specified point.

For example, if `z` refers to a string buffer object whose current contents are "start", then the method call `z.append("le")` would cause the string buffer to contain "starle", whereas `z.insert(4, "le")` would alter the string buffer to contain "starlet".

In general, if `sb` refers to an instance of a `StringBuffer`, then `sb.append(x)` has the same effect as `sb.insert(sb.length(), x)`.

Every string buffer has a capacity. As long as the length of the character sequence contained in the string buffer does not exceed the capacity, it is not necessary to allocate a new internal buffer array. If the internal buffer overflows, it is automatically made larger.

Since: JDK1.0

See Also: `ByteArrayOutputStream`, `String`
### Member Summary

#### Constructors

- **StringBuffer()**
  Constructs a string buffer with no characters in it and an initial capacity of 16 characters.

- **StringBuffer(int)**
  Constructs a string buffer with no characters in it and an initial capacity specified by the length argument.

- **StringBuffer(String)**
  Constructs a string buffer so that it represents the same sequence of characters as the string argument; in other words, the initial contents of the string buffer is a copy of the argument string.

#### Methods

- **append(boolean)**
  Appends the string representation of the boolean argument to the string buffer.

- **append(char)**
  Appends the string representation of the char argument to this string buffer.

- **append(char[])**
  Appends the string representation of the char array argument to this string buffer.

- **append(char[], int, int)**
  Appends the string representation of a subarray of the char array argument to this string buffer.

- **append(int)**
  Appends the string representation of the int argument to this string buffer.

- **append(long)**
  Appends the string representation of the long argument to this string buffer.

- **append(Object)**
  Appends the string representation of the Object argument to this string buffer.

- **append(String)**
  Appends the string to this string buffer.

- **capacity()**
  Returns the current capacity of the String buffer.

- **charAt(int)**
  The specified character of the sequence currently represented by the string buffer, as indicated by the index argument, is returned.

- **delete(int, int)**
  Removes the characters in a substring of this StringBuffer.

- **deleteCharAt(int)**
  Removes the character at the specified position in this StringBuffer (shortening the StringBuffer by one character).

- **ensureCapacity(int)**
  Ensures that the capacity of the buffer is at least equal to the specified minimum.

- **getChars(int, int, char[], int)**
  Characters are copied from this string buffer into the destination character array dst.

- **insert(int, boolean)**
  Inserts the string representation of the boolean argument into this string buffer.

- **insert(int, char)**
  Inserts the string representation of the char argument into this string buffer.

- **insert(int, char[])**
  Inserts the string representation of the char array argument into this string buffer.

- **insert(int, int)**
  Inserts the string representation of the second int argument into this string buffer.

- **insert(int, long)**
  Inserts the string representation of the long argument into this string buffer.

- **insert(int, Object)**
  Inserts the string representation of the Object argument into this string buffer.

- **insert(int, String)**
  Inserts the string into this string buffer.

- **setCharAt(int, char)**
  The character at the specified index of this string buffer is set to ch.

- **setLength(int)**
  Sets the length of this StringBuffer.

- **toString()**
  Converts to a string representing the data in this string buffer.

### Inherited Member Summary

Methods inherited from class **Object**

- **getClass()**, **hashCode()**, **equals(Object)**, **notify()**, **notifyAll()**, **wait(long)**, **wait(long, int)**, **wait()**
**Constructors**

**StringBuffer()**

```java
public StringBuffer()

Constructs a string buffer with no characters in it and an initial capacity of 16 characters.
```

**StringBuffer(int)**

```java
public StringBuffer(int length)

Constructs a string buffer with no characters in it and an initial capacity specified by the length argument.

Parameters:
length - the initial capacity.

Throws: NegativeArraySizeException - if the length argument is less than 0.
```

**StringBuffer(String)**

```java
public StringBuffer(String str)

Constructs a string buffer so that it represents the same sequence of characters as the string argument; in other words, the initial contents of the string buffer is a copy of the argument string. The initial capacity of the string buffer is 16 plus the length of the string argument.

Parameters:
str - the initial contents of the buffer.
```

**Methods**

**append(boolean)**

```java
public StringBuffer append(boolean b)

Appends the string representation of the boolean argument to the string buffer.

The argument is converted to a string as if by the method String.valueOf, and the characters of that string are then appended to this string buffer.

Parameters:

b - a boolean.

Returns: a reference to this StringBuffer.

See Also: valueOf(boolean), append(String)
```

**append(char)**

```java
public synchronized StringBuffer append(char c)

Appends the string representation of the char argument to this string buffer.
```
append(char[])  

The argument is appended to the contents of this string buffer. The length of this string buffer increases by 1.

The overall effect is exactly as if the argument were converted to a string by the method `valueOf(char)` and the character in that string were then `append(String)` to this StringBuffer object.

**Parameters:**
- c - a char.

**Returns:** a reference to this StringBuffer object.

append(char[])  

```java
public synchronized StringBuffer append(char[] str)
```

Appends the string representation of the char array argument to this string buffer.

The characters of the array argument are appended, in order, to the contents of this string buffer. The length of this string buffer increases by the length of the argument.

The overall effect is exactly as if the argument were converted to a string by the method `valueOf(char[])` and the characters of that string were then `append(String)` to this StringBuffer object.

**Parameters:**
- str - the characters to be appended.

**Returns:** a reference to this StringBuffer object.

append(char[], int, int)  

```java
public synchronized StringBuffer append(char[] str, int offset, int len)
```

Appends the string representation of a subarray of the char array argument to this string buffer.

Characters of the character array `str`, starting at index `offset`, are appended, in order, to the contents of this string buffer. The length of this string buffer increases by the value of `len`.

The overall effect is exactly as if the arguments were converted to a string by the method `valueOf(char[], int, int)` and the characters of that string were then `append(String)` to this StringBuffer object.

**Parameters:**
- str - the characters to be appended.
- offset - the index of the first character to append.
- len - the number of characters to append.

**Returns:** a reference to this StringBuffer object.

append(int)  

```java
public native StringBuffer append(int i)
```

Appends the string representation of the int argument to this string buffer.
The argument is converted to a string as if by the method `String.valueOf`, and the characters of that string are then appended to this string buffer.

**Parameters:**
- `i` - an int.

**Returns:** a reference to this `StringBuffer` object.

**See Also:** `valueOf(int), append(String)`

---

### append(long)

```java
public StringBuffer append(long l)
```

Appends the string representation of the `long` argument to this string buffer.

The argument is converted to a string as if by the method `String.valueOf`, and the characters of that string are then appended to this string buffer.

**Parameters:**
- `l` - a long.

**Returns:** a reference to this `StringBuffer` object.

**See Also:** `valueOf(long), append(String)`

---

### append(Object)

```java
public synchronized StringBuffer append(Object obj)
```

Appends the string representation of the `Object` argument to this string buffer.

The argument is converted to a string as if by the method `String.valueOf`, and the characters of that string are then appended to this string buffer.

**Parameters:**
- `obj` - an Object.

**Returns:** a reference to this `StringBuffer` object.

**See Also:** `valueOf(Object), append(String)`

---

### append(String)

```java
public native synchronized StringBuffer append(String str)
```

Appends the string to this string buffer.

The characters of the `String` argument are appended, in order, to the contents of this string buffer, increasing the length of this string buffer by the length of the argument. If `str` is `null`, then the four characters "null" are appended to this string buffer.

Let `n` be the length of the old character sequence, the one contained in the string buffer just prior to execution of the `append` method. Then the character at index `k` in the new character sequence is equal to the character at index `k` in the old character sequence, if `k` is less than `n`; otherwise, it is equal to the character at index `k-n` in the argument `str`.

**Parameters:**
- `str` - a string.
StringBuffer
java.lang

capacity()

public int capacity()

Returns the current capacity of the string buffer. The capacity is the amount of storage available for newly inserted characters; beyond which an allocation will occur.

Returns: the current capacity of this string buffer.

capacity()

>Returns: a reference to this StringBuffer.

charAt(int)

public synchronized char charAt(int index)

The specified character of the sequence currently represented by the string buffer, as indicated by the index argument, is returned. The first character of a string buffer is at index 0, the next at index 1, and so on, for array indexing.

The index argument must be greater than or equal to 0, and less than the length of this string buffer.

Parameters:
- index - the index of the desired character.

Returns: the character at the specified index of this string buffer.

Throws: IndexOutOfBoundsException - if index is negative or greater than or equal to length().

See Also: length()

delete(int, int)

public synchronized StringBuffer delete(int start, int end)

Removes the characters in a substring of this StringBuffer. The substring begins at the specified start and extends to the character at index end - 1 or to the end of the StringBuffer if no such character exists. If start is equal to end, no changes are made.

Parameters:
- start - The beginning index, inclusive.
- end - The ending index, exclusive.

Returns: This string buffer.

Throws: StringIndexOutOfBoundsException - if start is negative, greater than length(), or greater than end.

Since: 1.2

deleteCharAt(int)

public synchronized StringBuffer deleteCharAt(int index)

Removes the character at the specified position in this StringBuffer (shortening the StringBuffer by one character).
Parameters:
   index - Index of character to remove

Returns: This string buffer.

Throws: StringIndexOutOfBoundsException - if the index is negative or greater than or equal to length().

Since: 1.2

ensureCapacity(int)

public synchronized void ensureCapacity(int minimumCapacity)

Ensures that the capacity of the buffer is at least equal to the specified minimum. If the current capacity of this string buffer is less than the argument, then a new internal buffer is allocated with greater capacity. The new capacity is the larger of:
   • The minimumCapacity argument.
   • Twice the old capacity, plus 2.
If the minimumCapacity argument is nonpositive, this method takes no action and simply returns.

Parameters:
   minimumCapacity - the minimum desired capacity.

getChars(int, int, char[], int)

public synchronized void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)

Characters are copied from this string buffer into the destination character array dst. The first character to be copied is at index srcBegin; the last character to be copied is at index srcEnd-1. The total number of characters to be copied is srcEnd-srcBegin. The characters are copied into the subarray of dst starting at index dstBegin and ending at index:
   dstbegin + (srcEnd-srcBegin) - 1

Parameters:
   srcBegin - start copying at this offset in the string buffer.
   srcEnd - stop copying at this offset in the string buffer.
   dst - the array to copy the data into.
   dstBegin - offset into dst.

Throws: NullPointerException - if dst is null.
   IndexOutOfBoundsException - if any of the following is true:
      • srcBegin is negative
      • dstBegin is negative
      • the srcBegin argument is greater than the srcEnd argument.
      • srcEnd is greater than this.length(), the current length of this string buffer.
      • dstBegin+srcEnd-srcBegin is greater than dst.length

insert(int, boolean)

public StringBuffer insert(int offset, boolean b)
Inserts the string representation of the boolean argument into this string buffer.
The second argument is converted to a string as if by the method String.valueOf, and the characters of
that string are then inserted into this string buffer at the indicated offset.
The offset argument must be greater than or equal to 0, and less than or equal to the length of this string
buffer.

Parameters:
- offset - the offset.
- b - a boolean.

Returns: a reference to this StringBuffer object.

Throws: StringIndexOutOfBoundsException - if the offset is invalid.

See Also: valueOf(boolean), insert(int, String), length()

---

Inserts the string representation of the char argument into this string buffer.
The second argument is inserted into the contents of this string buffer at the position indicated by offset.
The length of this string buffer increases by one.
The overall effect is exactly as if the argument were converted to a string by the method
valueOf(char) and the character in that string were then insert(int, String) into this
StringBuffer object at the position indicated by offset.
The offset argument must be greater than or equal to 0, and less than or equal to the length of this string
buffer.

Parameters:
- offset - the offset.
- c - a char.

Returns: a reference to this StringBuffer object.

Throws: IndexOutOfBoundsException - if the offset is invalid.

See Also: length()

---

Inserts the string representation of the char array argument into this string buffer.
The characters of the array argument are inserted into the contents of this string buffer at the position indi-
cated by offset. The length of this string buffer increases by the length of the argument.
The overall effect is exactly as if the argument were converted to a string by the method
valueOf(char[]) and the characters of that string were then insert(int, String) into this
StringBuffer object at the position indicated by offset.

Parameters:
- offset - the offset.
str - a character array.

Returns: a reference to this StringBuffer object.

Throws: StringBuffer\n\ninsert(int, int)

public StringBuffer insert(int offset, int i)

Inserts the string representation of the second int argument into this string buffer.

The second argument is converted to a string as if by the method String.valueOf, and the characters of that string are then inserted into this string buffer at the indicated offset.

The offset argument must be greater than or equal to 0, and less than or equal to the length of this string buffer.

Parameters:
   offset - the offset.
   i - an int.

Returns: a reference to this StringBuffer object.

Throws: StringBuffer\n\nSee Also: valueOf(int). insert (int, String). length()

insert(int, long)

public StringBuffer insert(int offset, long l)

Inserts the string representation of the long argument into this string buffer.

The second argument is converted to a string as if by the method String.valueOf, and the characters of that string are then inserted into this string buffer at the position indicated by offset.

The offset argument must be greater than or equal to 0, and less than or equal to the length of this string buffer.

Parameters:
   offset - the offset.
   l - a long.

Returns: a reference to this StringBuffer object.

Throws: StringBuffer\n\nSee Also: valueOf(long). insert (int, String). length()

insert(int, Object)

public synchronized StringBuffer insert(int offset, Object obj)

Inserts the string representation of the Object argument into this string buffer.

The second argument is converted to a string as if by the method String.valueOf, and the characters of that string are then inserted into this string buffer at the indicated offset.
The offset argument must be greater than or equal to 0, and less than or equal to the length of this string buffer.

Parameters:
- offset - the offset.
- obj - an Object.

Returns: a reference to this StringBuffer object.

Throws: StringIndexOutOfBoundsException - if the offset is invalid.

See Also: valueOf(Object), insert(int, String), length()

---

public synchronized StringBuffer insert(int offset, String str)

Inserts the string into this string buffer.

The characters of the String argument are inserted, in order, into this string buffer at the indicated offset, moving up any characters originally above that position and increasing the length of this string buffer by the length of the argument. If str is null, then the four characters "null" are inserted into this string buffer.

The character at index $k$ in the new character sequence is equal to:
- the character at index $k$ in the old character sequence, if $k$ is less than offset
- the character at index $k$-offset in the argument str, if $k$ is not less than offset but is less than offset+str.length()
- the character at index $k$-str.length() in the old character sequence, if $k$ is not less than offset+str.length()

The offset argument must be greater than or equal to 0, and less than or equal to the length of this string buffer.

Parameters:
- offset - the offset.
- str - a string.

Returns: a reference to this StringBuffer object.

Throws: StringIndexOutOfBoundsException - if the offset is invalid.

See Also: length()

---

public int length()

Returns the length (character count) of this string buffer.

Returns: the length of the sequence of characters currently represented by this string buffer.

---

public synchronized StringBuffer reverse()

The character sequence contained in this string buffer is replaced by the reverse of the sequence.
Let $n$ be the length of the old character sequence, the one contained in the string buffer just prior to execution of the reverse method. Then the character at index $k$ in the new character sequence is equal to the character at index $n-k-1$ in the old character sequence.

**Returns:** a reference to this StringBuffer object.

**Since:** JDK1.0.2

---

**setCharAt(int, char)**

Public synchronized void setCharAt(int index, char ch)

The character at the specified index of this string buffer is set to ch. The string buffer is altered to represent a new character sequence that is identical to the old character sequence, except that it contains the character ch at position index.

The offset argument must be greater than or equal to 0, and less than the length of this string buffer.

**Parameters:**
- index - the index of the character to modify.
- ch - the new character.

**Throws:** [IndexOutOfBoundsException](#) - if index is negative or greater than or equal to length().

**See Also:** length()

---

**setLength(int)**

Public synchronized void setLength(int newLength)

Sets the length of this String buffer. This string buffer is altered to represent a new character sequence whose length is specified by the argument. For every nonnegative index $k$ less than newLength, the character at index $k$ in the new character sequence is the same as the character at index $k$ in the old sequence if $k$ is less than the length of the old character sequence; otherwise, it is the null character '\x00'. In other words, if the newLength argument is less than the current length of the string buffer, the string buffer is truncated to contain exactly the number of characters given by the newLength argument.

If the newLength argument is greater than or equal to the current length, sufficient null characters ('\0') are appended to the string buffer so that length becomes the newLength argument.

The newLength argument must be greater than or equal to 0.

**Parameters:**
- newLength - the new length of the buffer.

**Throws:** [IndexOutOfBoundsException](#) - if the newLength argument is negative.

**See Also:** length()

---

**toString()**

Public native String toString()

Converts to a string representing the data in this string buffer. A new String object is allocated and initialized to contain the character sequence currently represented by this string buffer. This String is then returned. Subsequent changes to the string buffer do not affect the contents of the String.
Implementation advice: This method can be coded so as to create a new `String` object without allocating new memory to hold a copy of the character sequence. Instead, the string can share the memory used by the string buffer. Any subsequent operation that alters the content or capacity of the string buffer must then make a copy of the internal buffer at that time. This strategy is effective for reducing the amount of memory allocated by a string concatenation operation when it is implemented using a string buffer.

Overrides: `toString()` in class `Object`

Returns: a string representation of the string buffer.
StringIndexOutOfBoundsException

Syntax
public class StringIndexOutOfBoundsException extends IndexOutOfBoundsException

Object
  -- Throwable
  -- Exception
  -- RuntimeException
  -- IndexOutOfBoundsException
  -- java.lang.StringIndexOutOfBoundsException

Description
Thrown by the charAt method in class String and by other String methods to indicate that an index is either negative or greater than or equal to the size of the string.

Since: JDK1.0

See Also: charAt(int)

Member Summary

Constructors
StringIndexOutOfBoundsException()
Constructs a StringIndexOutOfBoundsException with no detail message.

StringIndexOutOfBoundsException(int)
Constructs a new StringIndexOutOfBoundsException class with an argument indicating the illegal index.

StringIndexOutOfBoundsException(String)
Constructs a StringIndexOutOfBoundsException with the specified detail message.

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
getClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
Constructors

StringIndexOutOfBoundsException()

public StringIndexOutOfBoundsException()

Constructs a StringIndexOutOfBoundsException with no detail message.

Since: JDK1.0.

StringIndexOutOfBoundsException(int)

public StringIndexOutOfBoundsException(int index)

Constructs a new StringIndexOutOfBoundsException class with an argument indicating the illegal index.

Parameters:

index - the illegal index.

StringIndexOutOfBoundsException(String)

public StringIndexOutOfBoundsException(String s)

Constructs a StringIndexOutOfBoundsException with the specified detail message.

Parameters:

s - the detail message.
java.lang
System

Syntax
public final class System

Object

Description
The System class contains several useful class fields and methods. It cannot be instantiated.

Since: JDK1.0

Member Summary

<table>
<thead>
<tr>
<th>Fields</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>err</td>
<td>The &quot;standard&quot; error output stream.</td>
</tr>
<tr>
<td>out</td>
<td>The &quot;standard&quot; output stream.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arraycopy(...)</td>
<td>Copies an array from the specified source array, beginning at the specified</td>
</tr>
<tr>
<td></td>
<td>position, to the specified position of the destination array.</td>
</tr>
<tr>
<td>currentTimeMillis()</td>
<td>Returns the current time in milliseconds.</td>
</tr>
<tr>
<td>exit(...)</td>
<td>Terminates the currently running Java application.</td>
</tr>
<tr>
<td>gc()</td>
<td>Runs the garbage collector.</td>
</tr>
<tr>
<td>getProperty(...)</td>
<td>Gets the system property indicated by the specified key.</td>
</tr>
<tr>
<td>identityHashCode(...)</td>
<td>Returns the same hashcode for the given object as would be returned by the</td>
</tr>
<tr>
<td></td>
<td>default method hashCode(), whether or not the given object's class overrides</td>
</tr>
<tr>
<td></td>
<td>hashCode().</td>
</tr>
</tbody>
</table>

Inherited Member Summary

<table>
<thead>
<tr>
<th>Methods inherited from class Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>getClass(), hashCode(), equals(), toString(), notify(), notifyAll(), wait(), wait(), wait()</td>
</tr>
</tbody>
</table>

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>err</td>
<td>public static final PrintStream err</td>
</tr>
</tbody>
</table>
The "standard" error output stream. This stream is already open and ready to accept output data. Typically this stream corresponds to display output or another output destination specified by the host environment or user. By convention, this output stream is used to display error messages or other information that should come to the immediate attention of a user even if the principal output stream, the value of the variable out, has been redirected to a file or other destination that is typically not continuously monitored.

```java
public static final PrintStream out
```

The "standard" output stream. This stream is already open and ready to accept output data. Typically this stream corresponds to display output or another output destination specified by the host environment or user.

For simple stand-alone Java applications, a typical way to write a line of output data is:

```java
System.out.println(data)
```

See the `println` methods in class `PrintStream`.

See Also: `println()`, `println(boolean)`, `println(char)`, `println(char[])`, `println(int)`, `println(long)`, `println(Object)`, `println(String)`

### Methods

#### arraycopy(Object, int, Object, int, int)

```java
public static native void arraycopy(Object src, int src_position, Object dst, int dst_position, int length)
```

Copies an array from the specified source array, beginning at the specified position, to the specified position of the destination array. A subsequence of array components are copied from the source array referenced by `src` to the destination array referenced by `dst`. The number of components copied is equal to the `length` argument. The components at positions `srcOffset` through `srcOffset+length-1` in the source array are copied into positions `dstOffset` through `dstOffset+length-1`, respectively, of the destination array.

If the `src` and `dst` arguments refer to the same array object, then the copying is performed as if the components at positions `srcOffset` through `srcOffset+length-1` were first copied to a temporary array with `length` components and then the contents of the temporary array were copied into positions `dstOffset` through `dstOffset+length-1` of the destination array.

If `dst` is null, then a `NullPointerException` is thrown.

If `src` is null, then a `NullPointerException` is thrown and the destination array is not modified.

Otherwise, if any of the following is true, an `ArrayStoreException` is thrown and the destination is not modified:

- The `src` argument refers to an object that is not an array.
- The `dst` argument refers to an object that is not an array.
- The `src` argument and `dst` argument refer to arrays whose component types are different primitive types.
java.lang

System

currentTimeMillis()

- The `src` argument refers to an array with a primitive component type and the `dst` argument refers to an array with a reference component type.
- The `src` argument refers to an array with a reference component type and the `dst` argument refers to an array with a primitive component type.

Otherwise, if any of the following is true, an `IndexOutOfBoundsException` is thrown and the destination is not modified:

- The `srcOffset` argument is negative.
- The `dstOffset` argument is negative.
- The `length` argument is negative.
- `srcOffset+length` is greater than `src.length`, the length of the source array.
- `dstOffset+length` is greater than `dst.length`, the length of the destination array.

Otherwise, if any actual component of the source array from position `srcOffset` through `srcOffset+length-1` cannot be converted to the component type of the destination array by assignment conversion, an `ArrayStoreException` is thrown. In this case, let \( k \) be the smallest nonnegative integer less than `length` such that `src[srcOffset+k]` cannot be converted to the component type of the destination array; when the exception is thrown, source array components from positions `srcOffset` through `srcOffset+k-1` will already have been copied to destination array positions `dstOffset` through `dstOffset+k-1` and no other positions of the destination array will have been modified. (Because of the restrictions already itemized, this paragraph effectively applies only to the situation where both arrays have component types that are reference types.)

**Parameters:**

- `src` - the source array.
- `src_position` - start position in the source array.
- `dst` - the destination array.
- `dst_position` - pos start position in the destination data.
- `length` - the number of array elements to be copied.

**Throws:**

- `IndexOutOfBoundsException` - if copying would cause access of data outside array bounds.
- `ArrayStoreException` - if an element in the `src` array could not be stored into the `dest` array because of a type mismatch.
- `NullPointerException` - if either `src` or `dst` is null.

currentTimeMillis()

```java
public static native long currentTimeMillis()
```

Returns the current time in milliseconds.

**Returns:** the difference, measured in milliseconds, between the current time and midnight, January 1, 1970 UTC.

exit(int)

```java
public static void exit(int status)
```

Terminates the currently running Java application. The `status` argument serves as a status code; by convention, a nonzero status code indicates abnormal termination.
This method calls the `exit` method in class `Runtime`. This method never returns normally.

The call `System.exit(n)` is effectively equivalent to the call:

```java
Runtime.getRuntime().exit(n)
```

**Parameters:**
- `status` - exit status.

**See Also:** `exit(int)`

---

```java
public static void gc()
```

Runs the garbage collector.

Calling the `gc` method suggests that the Java Virtual Machine expend effort toward recycling unused objects in order to make the memory they currently occupy available for quick reuse. When control returns from the method call, the Java Virtual Machine has made a best effort to reclaim space from all discarded objects.

The call `System.gc()` is effectively equivalent to the call:

```java
Runtime.getRuntime().gc()
```

**See Also:** `gc()`

---

```java
public static String getProperty(String key)
```

Gets the system property indicated by the specified key.

**Parameters:**
- `key` - the name of the system property.

**Returns:** the string value of the system property, or `null` if there is no property with that key.

**Throws:** `NullPointerException` - if `key` is `null`.

`IllegalArgumentException` - if `key` is empty.

---

```java
public static native int identityHashCode(Object x)
```

Returns the same hashcode for the given object as would be returned by the default method `hashCode()`, whether or not the given object's class overrides `hashCode()`. The hashcode for the null reference is zero.

**Parameters:**
- `x` - object for which the hashCode is to be calculated

**Returns:** the hashCode

**Since:** JDK1.1
java.lang

Thread

Syntax

```java
public class Thread implements Runnable
```

All Implemented Interfaces: Runnable

Description

A **thread** is a thread of execution in a program. The Java Virtual Machine allows an application to have multiple threads of execution running concurrently.

Every thread has a priority. Threads with higher priority are executed in preference to threads with lower priority.

There are two ways to create a new thread of execution. One is to declare a class to be a subclass of `Thread`. This subclass should override the `run` method of class `Thread`. An instance of the subclass can then be allocated and started. For example, a thread that computes primes larger than a stated value could be written as follows:

```java
class PrimeThread extends Thread {
 long minPrime;
 PrimeThread(long minPrime) {
 this.minPrime = minPrime;
 }
 public void run() {
 // compute primes larger than minPrime
 ...
 }
}
```

The following code would then create a thread and start it running:

```java
PrimeThread p = new PrimeThread(143);
p.start();
```

The other way to create a thread is to declare a class that implements the `Runnable` interface. That class then implements the `run` method. An instance of the class can then be allocated, passed as an argument when creating `Thread`, and started. The same example in this other style looks like the following:

```java
class PrimeRun implements Runnable {
 long minPrime;
 PrimeRun(long minPrime) {
 this.minPrime = minPrime;
 }
 public void run() {
 // compute primes larger than minPrime
 ...
 }
}
```

The following code would then create a thread and start it running:
PrimeRun p = new PrimeRun(143);
new Thread(p).start();

Since: JDK1.0

See Also: Runnable, exit(int), run

### Member Summary

<table>
<thead>
<tr>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX_PRIORITY</td>
</tr>
<tr>
<td>MIN_PRIORITY</td>
</tr>
<tr>
<td>NORM_PRIORITY</td>
</tr>
</tbody>
</table>

The maximum priority that a thread can have.

The minimum priority that a thread can have.

The default priority that is assigned to a thread.

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread()</td>
</tr>
<tr>
<td>Thread(Runnable)</td>
</tr>
</tbody>
</table>

Allocates a new Thread object.

Allocates a new Thread object with a specific target object whose run method is called.

<table>
<thead>
<tr>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>activeCount()</td>
</tr>
<tr>
<td>currentThread()</td>
</tr>
<tr>
<td>getPriority()</td>
</tr>
<tr>
<td>isAlive()</td>
</tr>
<tr>
<td>join()</td>
</tr>
<tr>
<td>run()</td>
</tr>
</tbody>
</table>

Returns the current number of active threads in the VM.

Returns a reference to the currently executing thread object.

Returns this thread's priority.

Tests if this thread is alive.

Waits for this thread to die.

If this thread was constructed using a separate Runnable run object, then that Runnable object's run method is called; otherwise, this method does nothing and returns.

Changes the priority of this thread.

Causes the currently executing thread to sleep (temporarily cease execution) for the specified number of milliseconds.

Causes this thread to begin execution; the Java Virtual Machine calls the run method of this thread.

Returns a string representation of this thread, including a unique number that identifies the thread and the thread's priority.

Causes the currently executing thread object to temporarily pause and allow other threads to execute.

### Inherited Member Summary

Methods inherited from class Object

getClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
### MAX_PRIORITY

```java
public static final int MAX_PRIORITY
```

The maximum priority that a thread can have.

### MIN_PRIORITY

```java
public static final int MIN_PRIORITY
```

The minimum priority that a thread can have.

### NORM_PRIORITY

```java
public static final int NORM_PRIORITY
```

The default priority that is assigned to a thread.

### Constructors

#### Thread()

```java
public Thread()
```

Allocates a new `Thread` object.

Threads created this way must have overridden their `run()` method to actually do anything.

See Also: [Runnable](#)

#### Thread(Runnable)

```java
public Thread(Runnable target)
```

Allocates a new `Thread` object with a specific target object whose `run` method is called.

**Parameters:**
- `target` - the object whose `run` method is called.

### Methods

#### activeCount()

```java
public static native int activeCount()
```

Returns the current number of active threads in the VM.

**Returns:** the current number of threads in this thread's thread group.
currentThread()

public static native Thread currentThread()

Returns a reference to the currently executing thread object.

Returns: the currently executing thread.

getPriority()

public final int getPriority()

Returns this thread's priority.

Returns: this thread's name.
See Also: setPriority(int), setPriority(int)

isAlive()

public final native boolean isAlive()

Tests if this thread is alive. A thread is alive if it has been started and has not yet died.

Returns: true if this thread is alive; false otherwise.

join()

public final void join()

Waits for this thread to die.

Throws: InterruptedException - if another thread has interrupted the current thread. The interrupted status of the current thread is cleared when this exception is thrown.

run()

public void run()

If this thread was constructed using a separate Runnable run object, then that Runnable object's run method is called; otherwise, this method does nothing and returns.

Subclasses of Thread should override this method.

Specified By: run() in interface Runnable
See Also: start(), run()

setPriority(int)

public final void setPriority(int newPriority)

Changes the priority of this thread.

Parameters:
newPriority - priority to set this thread to
sleep(long)

`public static native void sleep(long millis)`

Causes the currently executing thread to sleep (temporarily cease execution) for the specified number of milliseconds. The thread does not lose ownership of any monitors.

**Parameters:**

- `millis` - the length of time to sleep in milliseconds.

**Throws:** `InterruptedException` - if another thread has interrupted the current thread. The interrupted status of the current thread is cleared when this exception is thrown.

**See Also:** `notify()`

start()

`public native synchronized void start()`

Causes this thread to begin execution; the Java Virtual Machine calls the `run` method of this thread.

The result is that two threads are running concurrently: the current thread (which returns from the call to the `start` method) and the other thread (which executes its `run` method).

**Throws:** `IllegalThreadStateException` - if the thread was already started.

**See Also:** `run()`

toString()

`public String toString()`

Returns a string representation of this thread, including a unique number that identifies the thread and the thread's priority.

**Overrides:** `toString()` in class `Object`

**Returns:** a string representation of this thread.

yield()

`public static native void yield()`

Causes the currently executing thread object to temporarily pause and allow other threads to execute.
The `Throwable` class is the superclass of all errors and exceptions in the Java language. Only objects that are instances of this class (or of one of its subclasses) are thrown by the Java Virtual Machine or can be thrown by the Java `throw` statement. Similarly, only this class or one of its subclasses can be the argument type in a `catch` clause.

Instances of two subclasses, `Error` and `Exception`, are conventionally used to indicate that exceptional situations have occurred. Typically, these instances are freshly created in the context of the exceptional situation so as to include relevant information (such as stack trace data).

By convention, class `Throwable` and its subclasses have two constructors, one that takes no arguments and one that takes a `String` argument that can be used to produce an error message.

A `Throwable` class contains a snapshot of the execution stack of its thread at the time it was created. It can also contain a message string that gives more information about the error.

Here is one example of catching an exception:

```java
try {
 int a[] = new int[2];
 a[4];
} catch (ArrayIndexOutOfBoundsException e) {
 System.out.println("exception: " + e.getMessage());
 e.printStackTrace();
}
```

Since: JDK1.0

<table>
<thead>
<tr>
<th><strong>Members Summary</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Constructors</strong></td>
</tr>
<tr>
<td><code>Throwable()</code></td>
</tr>
<tr>
<td><code>Throwable(String)</code></td>
</tr>
<tr>
<td><strong>Methods</strong></td>
</tr>
<tr>
<td><code>getMessage()</code></td>
</tr>
<tr>
<td><code>printStackTrace()</code></td>
</tr>
<tr>
<td><code>toString()</code></td>
</tr>
</tbody>
</table>
Constructors

Throwable()

    public Throwable()
    Constructs a new Throwable with null as its error message string.

Throwable(String)

    public Throwable(String message)
    Constructs a new Throwable with the specified error message.

    Parameters:
    message - the error message. The error message is saved for later retrieval by the getMessage() method.

Methods

getMessage()

    public String getMessage()
    Returns the error message string of this throwable object.

    Returns: the error message string of this Throwable object if it was Throwable(String) with an error message string; or null if it was Throwable() with no error message.

printStackTrace()

    public void printStackTrace()
    Prints this Throwable and its backtrace to the standard error stream. This method prints a stack trace for this Throwable object on the error output stream that is the value of the field System.err. The first line of output contains the result of the toString() method for this object.

    The format of the backtrace information depends on the implementation.
toString()

public String toString()

Returns a short description of this throwable object. If this Throwable object was Throwable(String), with an error message string, then the result is the concatenation of three strings:

- The name of the actual class of this object
- "::" (a colon and a space)
- The result of the getMessage() method for this object

If this Throwable object was Throwable() with no error message string, then the name of the actual class of this object is returned.

Overrides: toString() in class Object

Returns: a string representation of this Throwable.
java.lang

VirtualMachineError

Syntax

public abstract class VirtualMachineError extends Error

Inheritance

Object
  +-- Throwable
    +-- Error
      +-- java.lang.VirtualMachineError

Direct Known Subclasses: OutOfMemoryError

Description

Thrown to indicate that the Java Virtual Machine is broken or has run out of resources necessary for it to continue operating.

Since: JDK1.0

Member Summary

Constructors

VirtualMachineError() Constructs a VirtualMachineError with no detail message.
VirtualMachineError(String) Constructs a VirtualMachineError with the specified detail message.

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
class(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
public VirtualMachineError()

Constructs a VirtualMachineError with no detail message.

public VirtualMachineError(String s)

Constructs a VirtualMachineError with the specified detail message.

Parameters:

s - the detail message.
Package
java.util

Description
Contains the collections framework, legacy collection classes, date and time facilities and miscellaneous utility classes.

Since: JDK 1.0

<table>
<thead>
<tr>
<th>Class Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaces</td>
</tr>
<tr>
<td>Enumeration</td>
</tr>
<tr>
<td>Classes</td>
</tr>
<tr>
<td>Calendar</td>
</tr>
<tr>
<td>Date</td>
</tr>
<tr>
<td>Hashtable</td>
</tr>
<tr>
<td>Random</td>
</tr>
<tr>
<td>Stack</td>
</tr>
<tr>
<td>TimeZone</td>
</tr>
<tr>
<td>Vector</td>
</tr>
<tr>
<td>Exceptions</td>
</tr>
<tr>
<td>EmptyStackException</td>
</tr>
<tr>
<td>NoSuchElementException</td>
</tr>
</tbody>
</table>
java.util
Calendar

Syntax
public abstract class Calendar

Object
   +-- java.util.Calendar

Description
Calendar is an abstract class for getting and setting dates using a set of integer fields such as YEAR, MONTH, DAY, and so on. (A Date object represents a specific instant in time with millisecond precision. See Date for information about the Date class.)

Subclasses of Calendar interpret a Date according to the rules of a specific calendar system.

Like other locale-sensitive classes, Calendar provides a class method, getInstance, for getting a generally useful object of this type.

   Calendar rightNow = Calendar.getInstance();

A Calendar object can produce all the time field values needed to implement the date-time formatting for a particular language and calendar style (for example, Japanese-Gregorian, Japanese-Traditional).

When computing a Date from time fields, there may be insufficient information to compute the Date (such as only year and month but no day in the month).

Insufficient information. The calendar will use default information to specify the missing fields. This may vary by calendar; for the Gregorian calendar, the default for a field is the same as that of the start of the epoch: i.e., YEAR = 1970, MONTH = JANUARY, DATE = 1, etc.

Inconsistent information. In the J2SE calendar, it is possible to set fields inconsistently. However, in this subset, the DAY_OF_WEEK field cannot be set, and only a subset of the other J2SE Calendar fields are included. So it is not possible to set inconsistent data.

Note: The ambiguity in interpretation of what day midnight belongs to, is resolved as so: midnight "belongs" to the following day.

23:59 on Dec 31, 1969 < 00:00 on Jan 1, 1970.
12:00 PM is midday, and 12:00 AM is midnight.
11:59 PM on Jan 1 < 12:00 AM on Jan 2 < 12:01 AM on Jan 2.
11:59 AM on Mar 10 < 12:00 PM on Mar 10 < 12:01 PM on Mar 10.
24:00 or greater are invalid. Hours greater than 12 are invalid in AM/PM mode. Setting the time will never change the date.

If equivalent times are entered in AM/PM or 24 hour mode, equality will be determined by the actual time rather than the entered time.

This class is a subset for J2ME of the J2SE Calendar class. Many methods and variables have been pruned, and other methods simplified, in an effort to reduce the size of this class.

See Also: TimeZone
## Member Summary

### Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Value of the AM_PM field indicating the period of the day from midnight to just before noon.</td>
</tr>
<tr>
<td>AM_PM</td>
<td>Field number for get and set indicating whether the HOUR is before or after noon.</td>
</tr>
<tr>
<td>APRIL</td>
<td>Value of the MONTH field indicating the fourth month of the year.</td>
</tr>
<tr>
<td>AUGUST</td>
<td>Value of the MONTH field indicating the eighth month of the year.</td>
</tr>
<tr>
<td>DATE</td>
<td>Field number for get and set indicating the day of the month.</td>
</tr>
<tr>
<td>DAY_OF_MONTH</td>
<td>Field number for get and set indicating the day of the month.</td>
</tr>
<tr>
<td>DAY_OF_WEEK</td>
<td>Field number for get and set indicating the day of the week.</td>
</tr>
<tr>
<td>DECEMBER</td>
<td>Value of the MONTH field indicating the twelfth month of the year.</td>
</tr>
<tr>
<td>FEBRUARY</td>
<td>Value of the MONTH field indicating the second month of the year.</td>
</tr>
<tr>
<td>FRIDAY</td>
<td>Value of the DAY_OF_WEEK field indicating Friday.</td>
</tr>
<tr>
<td>HOUR</td>
<td>Field number for get and set indicating the hour of the morning or afternoon.</td>
</tr>
<tr>
<td>HOUR_OF_DAY</td>
<td>Field number for get and set indicating the hour of the day.</td>
</tr>
<tr>
<td>JANUARY</td>
<td>Value of the MONTH field indicating the first month of the year.</td>
</tr>
<tr>
<td>JULY</td>
<td>Value of the MONTH field indicating the seventh month of the year.</td>
</tr>
<tr>
<td>JUNE</td>
<td>Value of the MONTH field indicating the sixth month of the year.</td>
</tr>
<tr>
<td>MARCH</td>
<td>Value of the MONTH field indicating the third month of the year.</td>
</tr>
<tr>
<td>MAY</td>
<td>Value of the MONTH field indicating the fifth month of the year.</td>
</tr>
<tr>
<td>MILLISECOND</td>
<td>Field number for get and set indicating the millisecond within the second.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>Field number for get and set indicating the minute within the hour.</td>
</tr>
<tr>
<td>MONDAY</td>
<td>Value of the DAY_OF_WEEK field indicating Monday.</td>
</tr>
<tr>
<td>MONTH</td>
<td>Field number for get and set indicating the month.</td>
</tr>
<tr>
<td>NOVEMBER</td>
<td>Value of the MONTH field indicating the eleventh month of the year.</td>
</tr>
<tr>
<td>OCTOBER</td>
<td>Value of the MONTH field indicating the tenth month of the year.</td>
</tr>
<tr>
<td>SATURDAY</td>
<td>Value of the DAY_OF_WEEK field indicating Saturday.</td>
</tr>
<tr>
<td>SECOND</td>
<td>Field number for get and set indicating the second within the minute.</td>
</tr>
<tr>
<td>SEPTEMBER</td>
<td>Value of the MONTH field indicating the ninth month of the year.</td>
</tr>
<tr>
<td>SUNDAY</td>
<td>Value of the DAY_OF_WEEK field indicating Sunday.</td>
</tr>
<tr>
<td>THURSDAY</td>
<td>Value of the DAY_OF_WEEK field indicating Thursday.</td>
</tr>
<tr>
<td>TUESDAY</td>
<td>Value of the DAY_OF_WEEK field indicating Tuesday.</td>
</tr>
<tr>
<td>WEDNESDAY</td>
<td>Value of the DAY_OF_WEEK field indicating Wednesday.</td>
</tr>
<tr>
<td>PM</td>
<td>Field number for get and set indicating the period of the day from noon to just before midnight.</td>
</tr>
<tr>
<td>SATURDAY</td>
<td>Value of the DAY_OF_WEEK field indicating Saturday.</td>
</tr>
<tr>
<td>SECOND</td>
<td>Field number for get and set indicating the second within the minute.</td>
</tr>
<tr>
<td>SEPTEMBER</td>
<td>Value of the MONTH field indicating the ninth month of the year.</td>
</tr>
<tr>
<td>SUNDAY</td>
<td>Value of the DAY_OF_WEEK field indicating Sunday.</td>
</tr>
<tr>
<td>THURSDAY</td>
<td>Value of the DAY_OF_WEEK field indicating Thursday.</td>
</tr>
<tr>
<td>TUESDAY</td>
<td>Value of the DAY_OF_WEEK field indicating Tuesday.</td>
</tr>
<tr>
<td>WEDNESDAY</td>
<td>Value of the DAY_OF_WEEK field indicating Wednesday.</td>
</tr>
<tr>
<td>YEAR</td>
<td>Field number for get and set indicating the year.</td>
</tr>
</tbody>
</table>

### Constructors

- **Calendar()**
  
  Constructs a Calendar with the default time zone and default locale.

### Methods

- **after(Object)**
  
  Compares the time field records.

- **before(Object)**
  
  Compares the time field records.

- **equals(Object)**
  
  Compares this calendar to the specified object.

- **get(int)**
  
  Gets the value for a given time field.

- **getInstance()**
  
  Gets a calendar using the default time zone and default locale.

- **getInstance(TimeZone)**
  
  Gets a calendar using the specified time zone and default locale.

- **getTime()**
  
  Gets Calendar's current time.

- **getTimeInMillis()**
  
  Gets this Calendar's current time as a long expressed in milliseconds after January 1, 1970, 0:00:00 GMT (the epoch).

- **getTimeZone()**
  
  Gets the time zone.
Fields

AM

    public static final int AM

    Value of the AM_PM field indicating the period of the day from midnight to just before noon.

AM_PM

    public static final int AM_PM

    Field number for get and set indicating whether the HOUR is before or after noon. E.g., at 10:04:15.250 PM the AM_PM is PM.

    See Also: AM, PM, HOUR

APRIL

    public static final int APRIL

    Value of the MONTH field indicating the fourth month of the year.

AUGUST

    public static final int AUGUST

    Value of the MONTH field indicating the eighth month of the year.

DATE

    public static final int DATE

    Field number for get and set indicating the day of the month. This is a synonym for DAY_OF_MONTH.
See Also: [DAY_OF_MONTH](#)

---

**DAY_OF_MONTH**

```java
public static final int DAY_OF_MONTH
```

Field number for `get` and `set` indicating the day of the month. This is a synonym for `DATE`.

See Also: [DATE](#)

---

**DAY_OF_WEEK**

```java
public static final int DAY_OF_WEEK
```

Field number for `get` and `set` indicating the day of the week.

---

**DECEMBER**

```java
public static final int DECEMBER
```

Value of the `MONTH` field indicating the twelfth month of the year.

---

**FEBRUARY**

```java
public static final int FEBRUARY
```

Value of the `MONTH` field indicating the second month of the year.

---

**FRIDAY**

```java
public static final int FRIDAY
```

Value of the `DAY_OF_WEEK` field indicating Friday.

---

**HOUR**

```java
public static final int HOUR
```

Field number for `get` and `set` indicating the hour of the morning or afternoon. `HOUR` is used for the 12-hour clock. E.g., at 10:04:15.250 PM the `HOUR` is 10.

See Also: [AM_PM, HOUR_OF_DAY](#)

---

**HOUR_OF_DAY**

```java
public static final int HOUR_OF_DAY
```

Field number for `get` and `set` indicating the hour of the day. `HOUR_OF_DAY` is used for the 24-hour clock. E.g., at 10:04:15.250 PM the `HOUR_OF_DAY` is 22.

---

**JANUARY**

```java
public static final int JANUARY
```
Value of the \texttt{MONTH} field indicating the first month of the year.

\texttt{JULY}

public static final int \texttt{JULY}

Value of the \texttt{MONTH} field indicating the seventh month of the year.

\texttt{JUNE}

public static final int \texttt{JUNE}

Value of the \texttt{MONTH} field indicating the sixth month of the year.

\texttt{MARCH}

public static final int \texttt{MARCH}

Value of the \texttt{MONTH} field indicating the third month of the year.

\texttt{MAY}

public static final int \texttt{MAY}

Value of the \texttt{MONTH} field indicating the fifth month of the year.

\texttt{MILLISECOND}

public static final int \texttt{MILLISECOND}

Field number for \texttt{get} and \texttt{set} indicating the millisecond within the second. E.g., at 10:04:15.250 PM the \texttt{MILLISECOND} is 250.

\texttt{MINUTE}

public static final int \texttt{MINUTE}

Field number for \texttt{get} and \texttt{set} indicating the minute within the hour. E.g., at 10:04:15.250 PM the \texttt{MINUTE} is 4.

\texttt{MONDAY}

public static final int \texttt{MONDAY}

Value of the \texttt{DAY\_OF\_WEEK} field indicating Monday.

\texttt{MONTH}

public static final int \texttt{MONTH}

Field number for \texttt{get} and \texttt{set} indicating the month. This is a calendar-specific value.
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOVEMBER</td>
<td>public static final int NOVEMBER</td>
</tr>
<tr>
<td></td>
<td>Value of the MONTH field indicating the eleventh month of the year.</td>
</tr>
<tr>
<td>OCTOBER</td>
<td>public static final int OCTOBER</td>
</tr>
<tr>
<td></td>
<td>Value of the MONTH field indicating the tenth month of the year.</td>
</tr>
<tr>
<td>PM</td>
<td>public static final int PM</td>
</tr>
<tr>
<td></td>
<td>Value of the AM_PM field indicating the period of the day from noon to just before midnight.</td>
</tr>
<tr>
<td>SATURDAY</td>
<td>public static final int SATURDAY</td>
</tr>
<tr>
<td></td>
<td>Value of the DAY_OF_WEEK field indicating Saturday.</td>
</tr>
<tr>
<td>SECOND</td>
<td>public static final int SECOND</td>
</tr>
<tr>
<td></td>
<td>Field number for get and set indicating the second within the minute. E.g., at 10:04:15.250 PM the SECOND is 15.</td>
</tr>
<tr>
<td>SEPTEMBER</td>
<td>public static final int SEPTEMBER</td>
</tr>
<tr>
<td></td>
<td>Value of the MONTH field indicating the ninth month of the year.</td>
</tr>
<tr>
<td>SUNDAY</td>
<td>public static final int SUNDAY</td>
</tr>
<tr>
<td></td>
<td>Value of the DAY_OF_WEEK field indicating Sunday.</td>
</tr>
<tr>
<td>THURSDAY</td>
<td>public static final int THURSDAY</td>
</tr>
<tr>
<td></td>
<td>Value of the DAY_OF_WEEK field indicating Thursday.</td>
</tr>
<tr>
<td>TUESDAY</td>
<td>public static final int TUESDAY</td>
</tr>
</tbody>
</table>
Value of the `DAY_OF_WEEK` field indicating Tuesday.

```java
public static final int WEDNESDAY
```

Value of the `DAY_OF_WEEK` field indicating Wednesday.

```java
public static final int YEAR
```

Field number for `get` and `set` indicating the year. This is a calendar-specific value.

### Constructors

```java
Calendar()
protected Calendar()
```

Constructs a `Calendar` with the default time zone and default locale.

See Also: `getDefault()`

### Methods

```java
after(Object)
```

```java
public boolean after(Object when)
```

Compares the time field records. Equivalent to comparing result of conversion to UTC.

**Parameters:**

- `when` - the Calendar to be compared with this Calendar.

**Returns:** true if the current time of this Calendar is after the time of Calendar `when`; false otherwise.

```java
before(Object)
```

```java
public boolean before(Object when)
```

Compares the time field records. Equivalent to comparing result of conversion to UTC.

**Parameters:**

- `when` - the Calendar to be compared with this Calendar.

**Returns:** true if the current time of this Calendar is before the time of Calendar `when`; false otherwise.

```java
equals(Object)
```
public boolean equals(Object obj)

Compares this calendar to the specified object. The result is true if and only if the argument is not null and is a Calendar object that represents the same calendar as this object.

Overrides: equals(Object) in class Object

Parameters:
  obj - the object to compare with.

Returns: true if the objects are the same; false otherwise.

get(int)

public final int get(int field)

Gets the value for a given time field.

Parameters:
  field - the given time field (either YEAR, MONTH, DATE, DAY_OF_WEEK, HOUR_OF_DAY, HOUR, AM_PM, MINUTE, SECOND, or MILLISECOND

Returns: the value for the given time field.

Throws: ArrayIndexOutOfBoundsException - if the parameter is not one of the above.

generateInstance()

public static synchronized Calendar generateInstance()

Gets a calendar using the default time zone and default locale.

Returns: a Calendar.

generateInstance(TimeZone)

public static synchronized Calendar generateInstance(TimeZone zone)

Gets a calendar using the specified time zone and default locale.

Parameters:
  zone - the time zone to use

Returns: a Calendar.

generateTime()

public final Date generateTime()

Gets this Calendar's current time.

Returns: the current time.

See Also: setTime(Date)

generateTimeInMillis()

protected long generateTimeInMillis()
Calendar

getTimeZone()

Gets this Calendar's current time as a long expressed in milliseconds after January 1, 1970, 0:00:00 GMT (the epoch).

Returns: the current time as UTC milliseconds from the epoch.
See Also: setTimeInMillis(long)

g getTimeZone()

public TimeZone getTimeZone()

Gets the time zone.

Returns: the time zone object associated with this calendar.
See Also: setTimeZone(TimeZone)

set(int, int)

public final void set(int field, int value)

Sets the time field with the given value.

Parameters:
  field - the given time field. Note that the DAY_OF_WEEK field cannot be set.
  value - the value to be set for the given time field.

Throws: ArrayIndexOutOfBoundsException - if an illegal field parameter is received.

setTime(Date)

public final void setTime(Date date)

Sets this Calendar's current time with the given Date.

Note: Calling setTime() with Date(Long.MAX_VALUE) or Date(Long.MIN_VALUE) may yield incorrect field values from get().

Parameters:
  date - the given Date.
See Also: getTime()

setTimeInMillis(long)

protected void setTimeInMillis(long millis)

Sets this Calendar's current time from the given long value.

Parameters:
  millis - the new time in UTC milliseconds from the epoch.
See Also: getTimeInMillis()

setTimeZone(TimeZone)

public void setTimeZone(TimeZone value)
Sets the time zone with the given time zone value.

**Parameters:**

- `value` - the given time zone.

**See Also:** `getTimeZone()`
Date

java.util

Date

Description
The class Date represents a specific instant in time, with millisecond precision.

This Class has been subset for the MID Profile based on JDK 1.3. In the full API, the class Date had two additional functions. It allowed the interpretation of dates as year, month, day, hour, minute, and second values. It also allowed the formatting and parsing of date strings. Unfortunately, the API for these functions was not amenable to internationalization. As of JDK 1.1, the Calendar class should be used to convert between dates and time fields and the DateFormat class should be used to format and parse date strings. The corresponding methods in Date are deprecated.

Although the Date class is intended to reflect coordinated universal time (UTC), it may not do so exactly, depending on the host environment of the Java Virtual Machine. Nearly all modern operating systems assume that 1 day = 24x60x60 = 86400 seconds in all cases. In UTC, however, about once every year or two there is an extra second, called a "leap second." The leap second is always added as the last second of the day, and always on December 31 or June 30. For example, the last minute of the year 1995 was 61 seconds long, thanks to an added leap second. Most computer clocks are not accurate enough to be able to reflect the leap-second distinction.

See Also: TimeZone, Calendar

Member Summary

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date()</td>
</tr>
<tr>
<td>Allocates a Date object and initializes it to represent the current time specified number of milliseconds since the standard base time known as &quot;the epoch&quot;, namely January 1, 1970, 00:00:00 GMT.</td>
</tr>
<tr>
<td>Date(long)</td>
</tr>
<tr>
<td>Allocates a Date object and initializes it to represent the specified number of milliseconds since the standard base time known as &quot;the epoch&quot;, namely January 1, 1970, 00:00:00 GMT.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>equals(Object)</td>
</tr>
<tr>
<td>Compares two dates for equality.</td>
</tr>
<tr>
<td>getTime()</td>
</tr>
<tr>
<td>Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by this Date object.</td>
</tr>
<tr>
<td>hashCode()</td>
</tr>
<tr>
<td>Returns a hash code value for this object.</td>
</tr>
<tr>
<td>setTimeZone(TimeZone)</td>
</tr>
<tr>
<td>Sets this Date object to represent a point in time that is time milliseconds after January 1, 1970 00:00:00 GMT.</td>
</tr>
</tbody>
</table>
Constructors

**Date()**

```java
public Date()
```

Allocates a `Date` object and initializes it to represent the current time specified number of milliseconds since the standard base time known as "the epoch", namely January 1, 1970, 00:00:00 GMT.

**See Also:** `currentTimeMillis()`

**Date(long)**

```java
public Date(long date)
```

Allocates a `Date` object and initializes it to represent the specified number of milliseconds since the standard base time known as "the epoch", namely January 1, 1970, 00:00:00 GMT.

**Parameters:**
- `date` - the milliseconds since January 1, 1970, 00:00:00 GMT.

**See Also:** `currentTimeMillis()`

Methods

**equals(Object)**

```java
public boolean equals(Object obj)
```

Compares two dates for equality. The result is `true` if and only if the argument is not `null` and is a `Date` object that represents the same point in time, to the millisecond, as this object.

Thus, two `Date` objects are equal if and only if the `getTime` method returns the same `long` value for both.

**Overrides:** `equals(Object)` in class `Object`

**Parameters:**
- `obj` - the object to compare with.

**Returns:** `true` if the objects are the same; `false` otherwise.

**See Also:** `getTime()`
getTime()

```java
public long getTime()

 Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by this Date object.

Returns: the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by this date.

See Also: getTime(long)
```

hashCode()

```java
public int hashCode()

 Returns a hash code value for this object. The result is the exclusive OR of the two halves of the primitive long value returned by the getTime() method. That is, the hash code is the value of the expression:

 (int)(this.getTime()^(this.getTime() >>> 32))

Overrides: hashCode() in class Object

Returns: a hash code value for this object.
```

setTime(long)

```java
public void setTime(long time)

 Sets this Date object to represent a point in time that is time milliseconds after January 1, 1970 00:00:00 GMT.

Parameters:
 time - the number of milliseconds.

See Also: getTime()
```
java.util

EmptyStackException

Syntax
public class EmptyStackException extends RuntimeException

Object
    +-- Throwable
        +-- Exception
            +-- RuntimeException
                +-- java.util.EmptyStackException

Description
Thrown by methods in the Stack class to indicate that the stack is empty.

Since: JDK1.0

See Also: Stack

Member Summary

Constructors
EmptyStackException() Constructs a new EmptyStackException with null as its error message string.

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
getClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
EmptyStackException

EmptyStackException()

Constructs a new EmptyStackException with null as its error message string.
Enumeration

Syntax
public abstract interface Enumeration

Description
An object that implements the Enumeration interface generates a series of elements, one at a time. Successive calls to the nextElement method return successive elements of the series.

For example, to print all elements of a vector v:

```java
for (Enumeration e = v.elements() ; e.hasMoreElements() ;) {
 System.out.println(e.nextElement());
}
```

Methods are provided to enumerate through the elements of a vector, the keys of a hashtable, and the values in a hashtable.

Since: JDK1.0

See Also: nextElement(), Hashtable.elements(), keys(), Vector.elements()

Member Summary

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hasMoreElements()</td>
<td>Tests if this enumeration contains more elements.</td>
</tr>
<tr>
<td>nextElement()</td>
<td>Returns the next element of this enumeration if this enumeration object has at least one more element to provide.</td>
</tr>
</tbody>
</table>

Methods

hasMoreElements()

```java
public boolean hasMoreElements()
```

Tests if this enumeration contains more elements.

Returns: true if and only if this enumeration object contains at least one more element to provide;
false otherwise.

nextElement()

```java
public Object nextElement()
```
Enumeration

nextElement()

Returns the next element of this enumeration if this enumeration object has at least one more element to provide.

Returns: the next element of this enumeration.

Throws: NoSuchElementException - if no more elements exist.
# Hashtable

This class implements a hashtable, which maps keys to values. Any non-null object can be used as a key or as a value.

To successfully store and retrieve objects from a hashtable, the objects used as keys must implement the `hashCode` method and the `equals` method.

An instance of `Hashtable` has two parameters that affect its efficiency: its `capacity` and its `load factor`. The load factor should be between 0.0 and 1.0. When the number of entries in the hashtable exceeds the product of the load factor and the current capacity, the capacity is increased by calling the `rehash` method. Larger load factors use memory more efficiently, at the expense of larger expected time per lookup.

If many entries are to be made into a `Hashtable`, creating it with a sufficiently large capacity may allow the entries to be inserted more efficiently than letting it perform automatic rehashing as needed to grow the table.

This example creates a hashtable of numbers. It uses the names of the numbers as keys:

```java
Hashtable numbers = new Hashtable();
numbers.put("one", new Integer(1));
numbers.put("two", new Integer(2));
numbers.put("three", new Integer(3));
```

To retrieve a number, use the following code:

```java
Integer n = (Integer)numbers.get("two");
if (n != null) {
 System.out.println("two = " + n);
}
```

Note: To conserve space, the CLDC implementation is based on JDK 1.1.8, not JDK 1.3.

**Since:** JDK 1.0

**See Also:** `equals(Object)`, `hashCode()`, `rehash()`

## Member Summary

### Constructors

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Hashtable()</code></td>
<td>Constructs a new, empty hashtable with a default capacity and load factor.</td>
</tr>
<tr>
<td><code>Hashtable(int)</code></td>
<td>Constructs a new, empty hashtable with the specified initial capacity.</td>
</tr>
</tbody>
</table>

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear()</code></td>
<td>Clears this hashtable so that it contains no keys.</td>
</tr>
</tbody>
</table>
Hashtable

Hashtable()

Constructors

Hashtable()

public Hashtable()

Constructs a new, empty hashtable with a default capacity and load factor.

Since: JDK1.0

Hashtable(int)

public Hashtable(int initialCapacity)

Constructs a new, empty hashtable with the specified initial capacity.

Parameters:

initialCapacity - the initial capacity of the hashtable.

Throws: IllegalArgumentException - if the initial capacity is less than zero

Since: JDK1.0

Methods

Member Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>contains(Object)</td>
<td>Tests if some key maps into the specified value in this hashtable.</td>
</tr>
<tr>
<td>containsKey(Object)</td>
<td>Tests if the specified object is a key in this hashtable.</td>
</tr>
<tr>
<td>elements()</td>
<td>Returns an enumeration of the values in this hashtable.</td>
</tr>
<tr>
<td>get(Object)</td>
<td>Returns the value to which the specified key is mapped in this hashtable.</td>
</tr>
<tr>
<td>isEmpty()</td>
<td>Tests if this hashtable maps no keys to values.</td>
</tr>
<tr>
<td>keys()</td>
<td>Returns an enumeration of the keys in this hashtable.</td>
</tr>
<tr>
<td>put(Object, Object)</td>
<td>Maps the specified key to the specified value in this hashtable.</td>
</tr>
<tr>
<td>rehash()</td>
<td>Rehashes the contents of the hashtable into a hashtable with a larger capacity.</td>
</tr>
<tr>
<td>remove(Object)</td>
<td>Removes the key (and its corresponding value) from this hashtable.</td>
</tr>
<tr>
<td>size()</td>
<td>Returns the number of keys in this hashtable.</td>
</tr>
<tr>
<td>toString()</td>
<td>Returns a rather long string representation of this hashtable.</td>
</tr>
</tbody>
</table>

Inherited Member Summary

Methods inherited from class Object

gClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
clear()

public synchronized void clear()
Clears this hashtable so that it contains no keys.
Since: JDK1.0

contains(Object)

public synchronized boolean contains(Object value)
Tests if some key maps into the specified value in this hashtable. This operation is more expensive than the containsKey method.
Parameters:
   value - a value to search for.
Returns: true if some key maps to the value argument in this hashtable; false otherwise.
Throws: NullPointerException - if the value is null.
Since: JDK1.0
See Also: containsKey(Object)

containsKey(Object)

public synchronized boolean containsKey(Object key)
Tests if the specified object is a key in this hashtable.
Parameters:
   key - possible key.
Returns: true if the specified object is a key in this hashtable; false otherwise.
Since: JDK1.0
See Also: contains(Object)

elements()

public synchronized Enumeration elements()
Returns an enumeration of the values in this hashtable. Use the Enumeration methods on the returned object to fetch the elements sequentially.
Returns: an enumeration of the values in this hashtable.
Since: JDK1.0
See Also: Enumeration, keys()

get(Object)

public synchronized Object get(Object key)
Returns the value to which the specified key is mapped in this hashtable.
Hashtable

isEmpty()

Parameters:
key - a key in the hashtable.

Returns: the value to which the key is mapped in this hashtable; null if the key is not mapped to any value in this hashtable.

Since: JDK1.0

See Also: put(Object, Object)

isEmpty()

public boolean isEmpty()

Tests if this hashtable maps no keys to values.

Returns: true if this hashtable maps no keys to values; false otherwise.

Since: JDK1.0

See Also: Enumeration, elements()

keys()

public synchronized Enumeration keys()

Returns an enumeration of the keys in this hashtable.

Returns: an enumeration of the keys in this hashtable.

Since: JDK1.0

See Also: Enumeration, elements()

put(Object, Object)

public synchronized Object put(Object key, Object value)

Maps the specified key to the specified value in this hashtable. Neither the key nor the value can be null.

The value can be retrieved by calling the get method with a key that is equal to the original key.

Parameters:
key - the hashtable key.
value - the value.

Returns: the previous value of the specified key in this hashtable, or null if it did not have one.

Throws: NullPointerException - if the key or value is null.

Since: JDK1.0

See Also: equals(Object), get(Object)

rehash()

protected void rehash()

Rehashes the contents of the hashtable into a hashtable with a larger capacity. This method is called automatically when the number of keys in the hashtable exceeds this hashtable's capacity and load factor.
Since: JDK1.0

remove(Object)

```java
public synchronized Object remove(Object key)
```

Removes the key (and its corresponding value) from this hashtable. This method does nothing if the key is not in the hashtable.

**Parameters:**
- `key`: the key that needs to be removed.

**Returns:** the value to which the key had been mapped in this hashtable, or `null` if the key did not have a mapping.

Since: JDK1.0

size()

```java
public int size()
```

Returns the number of keys in this hashtable.

**Returns:** the number of keys in this hashtable.

Since: JDK1.0

toString()

```java
public synchronized String toString()
```

Returns a rather long string representation of this hashtable.

**Overrides:** `toString()` in class `Object`

**Returns:** a string representation of this hashtable.

Since: JDK1.0
NoSuchElementException

java.util

NoSuchElementException

Syntax
public class NoSuchElementException extends RuntimeException

Description
Thrown by the nextElement method of an Enumeration to indicate that there are no more elements in the enumeration.

Since: JDK1.0

See Also: Enumeration, nextElement()

Member Summary

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoSuchElementException()</td>
</tr>
<tr>
<td>NoSuchElementException(String)</td>
</tr>
</tbody>
</table>

Inherited Member Summary

<table>
<thead>
<tr>
<th>Methods inherited from class Throwable</th>
</tr>
</thead>
<tbody>
<tr>
<td>getMessage(), toString(), printStackTrace()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods inherited from class Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>getClass(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()</td>
</tr>
</tbody>
</table>

Constructors
NoSuchElementException()

public NoSuchElementException()

    Constructs a NoSuchElementException with null as its error message string.

NoSuchElementException(String)

public NoSuchElementException(String s)

    Constructs a NoSuchElementException, saving a reference to the error message string s for later retrieval by the getMessage method.

Parameters:

    s - the detail message.
Random
NoSuchElementException(String)

java.util

Random

Syntax
public class Random

Description
An instance of this class is used to generate a stream of pseudorandom numbers. The class uses a 48-bit seed, which is modified using a linear congruential formula. (See Donald Knuth, The Art of Computer Programming, Volume 2, Section 3.2.1.)

If two instances of Random are created with the same seed, and the same sequence of method calls is made for each, they will generate and return identical sequences of numbers. In order to guarantee this property, particular algorithms are specified for the class Random. Java implementations must use all the algorithms shown here for the class Random, for the sake of absolute portability of Java code. However, subclasses of class Random are permitted to use other algorithms, so long as they adhere to the general contracts for all the methods.

The algorithms implemented by class Random use a protected utility method that on each invocation can supply up to 32 pseudorandomly generated bits.

Since: JDK1.0

<table>
<thead>
<tr>
<th>Member Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructors</td>
</tr>
<tr>
<td>Random()</td>
</tr>
<tr>
<td>Random(long)</td>
</tr>
<tr>
<td>Methods</td>
</tr>
<tr>
<td>next(int)</td>
</tr>
<tr>
<td>nextInt()</td>
</tr>
<tr>
<td>nextLong()</td>
</tr>
<tr>
<td>setSeed(long)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inherited Member Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods inherited from class Object</td>
</tr>
</tbody>
</table>
Constructors

Random()

public Random()

Creates a new random number generator. Its seed is initialized to a value based on the current time:

    public Random() { this(System.currentTimeMillis()); }

See Also: currentTimeMillis()

Random(long)

public Random(long seed)

Creates a new random number generator using a single long seed:

    public Random(long seed) { setSeed(seed); }

Used by method next to hold the state of the pseudorandom number generator.

Parameters:
- seed - the initial seed.

See Also: setSeed(long)

Methods

next(int)

protected synchronized int next(int bits)

Generates the next pseudorandom number. Subclass should override this, as this is used by all other methods.

The general contract of next is that it returns an int value and if the argument bits is between 1 and 32 (inclusive), then that many low-order bits of the returned value will be (approximately) independently chosen bit values, each of which is (approximately) equally likely to be 0 or 1. The method next is implemented by class Random as follows:

    synchronized protected int next(int bits) {
        seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);
        return (int)(seed >>> (48 - bits));
    }

This is a linear congruential pseudorandom number generator, as defined by D. H. Lehmer and described by Donald E. Knuth in The Art of Computer Programming, Volume 2: Seminumerical Algorithms, section 3.2.1.
Random

nextInt()

Parameters:

bits - random bits

Returns: the next pseudorandom value from this random number generator's sequence.

Since: JDK1.1

nextInt()

public int nextInt()

Returns the next pseudorandom, uniformly distributed int value from this random number generator's sequence. The general contract of nextInt is that one int value is pseudorandomly generated and returned. All 232 possible int values are produced with (approximately) equal probability. The method nextInt is implemented by class Random as follows:

public int nextInt() { return next(32); }

Returns: the next pseudorandom, uniformly distributed int value from this random number generator's sequence.

nextLong()

public long nextLong()

Returns the next pseudorandom, uniformly distributed long value from this random number generator's sequence. The general contract of nextLong is that one long value is pseudorandomly generated and returned. All 264 possible long values are produced with (approximately) equal probability. The method nextLong is implemented by class Random as follows:

public long nextLong() {
    return ((long)next(32) << 32) + next(32);
}

Returns: the next pseudorandom, uniformly distributed long value from this random number generator's sequence.

setSeed(long)

public synchronized void setSeed(long seed)

Sets the seed of this random number generator using a single long seed. The general contract of setSeed is that it alters the state of this random number generator object so as to be in exactly the same state as if it had just been created with the argument seed as a seed. The method setSeed is implemented by class Random as follows:

synchronized public void setSeed(long seed) {
    this.seed = (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1);
}

The implementation of setSeed by class Random happens to use only 48 bits of the given seed. In general, however, an overriding method may use all 64 bits of the long argument as a seed value.

Parameters:

seed - the initial seed.
java.util

Stack

Syntax

public class Stack extends Vector

Object

|-- Vector

|--- java.util.Stack

Description

The Stack class represents a last-in-first-out (LIFO) stack of objects. It extends class Vector with five operations that allow a vector to be treated as a stack. The usual push and pop operations are provided, as well as a method to peek at the top item on the stack, a method to test for whether the stack is empty, and a method to search the stack for an item and discover how far it is from the top.

When a stack is first created, it contains no items.

Since: JDK1.0

Member Summary

<table>
<thead>
<tr>
<th>Constructors</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack()</td>
<td>empty()</td>
</tr>
<tr>
<td></td>
<td>peek()</td>
</tr>
<tr>
<td></td>
<td>pop()</td>
</tr>
<tr>
<td></td>
<td>push()</td>
</tr>
<tr>
<td></td>
<td>search()</td>
</tr>
</tbody>
</table>

Creates an empty Stack.
Tests if this stack is empty.
Looks at the object at the top of this stack without removing it from the stack.
Removes the object at the top of this stack and returns that object as the value of this function.
 Pushes an item onto the top of this stack.
 Returns the 1-based position where an object is on this stack.

Inherited Member Summary

Fields inherited from class Vector: elementData, elementCount, capacityIncrement

Methods inherited from class Vector
### Constructors

**Stack()**

```java
public Stack()
 Creates an empty Stack.
```

### Methods

#### empty()

```java
public boolean empty()
 Tests if this stack is empty.

Returns: true if and only if this stack contains no items; false otherwise.
```

#### peek()

```java
public synchronized Object peek()
 Looks at the object at the top of this stack without removing it from the stack.

Returns: the object at the top of this stack (the last item of the Vector object).

Throws: EmptyStackException - if this stack is empty.
```

#### pop()

```java
public synchronized Object pop()
 Removes the object at the top of this stack and returns that object as the value of this function.

Returns: The object at the top of this stack (the last item of the Vector object).

Throws: EmptyStackException - if this stack is empty.
```
push(Object)

```java
public Object push(Object item)
```

Pushes an item onto the top of this stack. This has exactly the same effect as:

```java
addElement(item)
```

**Parameters:**
- `item` - the item to be pushed onto this stack.

**Returns:** the `item` argument.

**See Also:** `addElement(Object)`

search(Object)

```java
public synchronized int search(Object o)
```

Returns the 1-based position where an object is on this stack. If the object `o` occurs as an item in this stack, this method returns the distance from the top of the stack of the occurrence nearest the top of the stack; the topmost item on the stack is considered to be at distance 1. The `equals` method is used to compare `o` to the items in this stack.

**Parameters:**
- `o` - the desired object.

**Returns:** the 1-based position from the top of the stack where the object is located; the return value -1 indicates that the object is not on the stack.
TimeZone

java.util

TimeZone

Syntax
public abstract class TimeZone

Description
TimeZone represents a time zone offset, and also figures out daylight savings.

Typically, you get a TimeZone using getDefault which creates a TimeZone based on the time zone
where the program is running. For example, for a program running in Japan, getDefault creates a Time-
Zone object based on Japanese Standard Time.

You can also get a TimeZone using getTimeZone along with a time zone ID. For instance, the time zone ID
for the Pacific Standard Time zone is "PST". So, you can get a PST TimeZone object with:

    TimeZone tz = TimeZone.getTimeZone("PST");

This class is a pure subset of the java.util.TimeZone class in J2SE.

The only time zone ID that is required to be supported is "GMT".

Apart from the methods and variables being subset, the semantics of the getTimeZone() method may also be
subset: custom IDs such as "GMT-8:00" are not required to be supported.

See Also: Calendar

<table>
<thead>
<tr>
<th>Member Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Constructors</strong></td>
</tr>
<tr>
<td>TimeZone()</td>
</tr>
</tbody>
</table>

| **Methods** |
getAvailableIDs()	Gets all the available IDs supported.
getDefault()	Gets the default TimeZone for this host.
getID()	Gets the ID of this time zone.
getOffset(int, int, int, int, int, int)	Gets offset, for current date, modified in case of daylight savings.
getRawOffset()	Gets the GMT offset for this time zone.
getTimeZone(String)	Gets the TimeZone for the given ID.
useDaylightTime()	Queries if this time zone uses Daylight Savings Time.
Constructors

TimeZone()

public TimeZone()

Methods

getAvailableIDs()

public static String[] getAvailableIDs()

Gets all the available IDs supported.

Returns: an array of IDs.

getDefault()

public static synchronized TimeZone getDefault()

Gets the default TimeZone for this host. The source of the default TimeZone may vary with implementation.

Returns: a default TimeZone.

getID()

public StringgetID()

Gets the ID of this time zone.

Returns: the ID of this time zone.

getOffset(int, int, int, int, int, int)

public abstract int getOffset(int era, int year, int month, int day, int dayOfWeek, int millis)

Gets offset, for current date, modified in case of daylight savings. This is the offset to add *to* GMT to get local time. Gets the time zone offset, for current date, modified in case of daylight savings. This is the offset to add *to* GMT to get local time. Assume that the start and end month are distinct. This method may

Inherited Member Summary

Methods inherited from class Object
getClass(), hashCode(), equals(Object), toString(), notify(), notifyAll(), wait(long), wait(long, int), wait()
TimeZone

generateOffset()

return incorrect results for rules that start at the end of February (e.g., last Sunday in February) or the beginning of March (e.g., March 1).

Parameters:
- era - The era of the given date (0 = BC, 1 = AD).
- year - The year in the given date.
- month - The month in the given date. Month is 0-based. e.g., 0 for January.
- day - The day-in-month of the given date.
- dayOfWeek - The day-of-week of the given date.
- millis - The milliseconds in day in standard local time.

Returns: The offset to add *to* GMT to get local time.

Throws: IllegalArgumentException - the era, month, day, dayOfWeek, or millis parameters are out of range.

getRawOffset()

public abstract int getRawOffset()

Gets the GMT offset for this time zone.

Returns: the GMT offset for this time zone.

generateTimeZone(String)

public static synchronized TimeZone generateTimeZone(String ID)

Gets the TimeZone for the given ID.

Parameters:
- ID - the ID for a TimeZone, either an abbreviation such as "GMT", or a full name such as "America/Los_Angeles".

The only time zone ID that is required to be supported is "GMT".

Returns: the specified TimeZone, or the GMT zone if the given ID cannot be understood.

useDaylightTime()

public abstract boolean useDaylightTime()

Queries if this time zone uses Daylight Savings Time.

Returns: if this time zone uses Daylight Savings Time.
Vector

Syntax
public class Vector

Object
   |-- java.util.Vector

Direct Known Subclasses: Stack

Description
The Vector class implements a growable array of objects. Like an array, it contains components that can be accessed using an integer index. However, the size of a Vector can grow or shrink as needed to accommodate adding and removing items after the Vector has been created.

Each vector tries to optimize storage management by maintaining a capacity and a capacityIncrement. The capacity is always at least as large as the vector size; it is usually larger because as components are added to the vector, the vector's storage increases in chunks the size of capacityIncrement. An application can increase the capacity of a vector before inserting a large number of components; this reduces the amount of incremental reallocation.

Note: To conserve space, the CLDC implementation is based on JDK 1.1.8, not JDK 1.3.

Since: JDK1.0

<table>
<thead>
<tr>
<th>Member Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fields</strong></td>
</tr>
<tr>
<td>capacityIncrement</td>
</tr>
<tr>
<td>elementCount</td>
</tr>
<tr>
<td>elementData</td>
</tr>
<tr>
<td><strong>Constructors</strong></td>
</tr>
<tr>
<td>Vector()</td>
</tr>
<tr>
<td>Vector(int)</td>
</tr>
<tr>
<td>Vector(int, int)</td>
</tr>
<tr>
<td><strong>Methods</strong></td>
</tr>
<tr>
<td>addElement(Object)</td>
</tr>
<tr>
<td>capacity()</td>
</tr>
<tr>
<td>contains(Object)</td>
</tr>
<tr>
<td>copyInto(Object[])</td>
</tr>
<tr>
<td>elementAt(int)</td>
</tr>
<tr>
<td>elements()</td>
</tr>
<tr>
<td>ensureCapacity(int)</td>
</tr>
</tbody>
</table>
Fields

**capacityIncrement**

protected int capacityIncrement

The amount by which the capacity of the vector is automatically incremented when its size becomes greater than its capacity. If the capacity increment is 0, the capacity of the vector is doubled each time it needs to grow.

Since: JDK1.0

**elementCount**

protected int elementCount

The number of valid components in the vector.

Since: JDK1.0
elementData

protected Object[] elementData

The array buffer into which the components of the vector are stored. The capacity of the vector is the length
of this array buffer.

Since: JDK1.0

Constructors

Vector()

public Vector()

Constructs an empty vector.

Since: JDK1.0

Vector(int)

public Vector(int initialCapacity)

Constructs an empty vector with the specified initial capacity.

Parameters:

initialCapacity - the initial capacity of the vector.

Since: JDK1.0

Vector(int, int)

public Vector(int initialCapacity, int capacityIncrement)

Constructs an empty vector with the specified initial capacity and capacity increment.

Parameters:

initialCapacity - the initial capacity of the vector.

capacityIncrement - the amount by which the capacity is increased when the vector overflows.

Throws: IllegalArgumentException - if the specified initial capacity is negative

Methods

addElement(Object)

public synchronized void addElement(Object obj)

Adds the specified component to the end of this vector, increasing its size by one. The capacity of this vec-
tor is increased if its size becomes greater than its capacity.
Vector java.util
capacity()

Parameters:
   obj - the component to be added.

Since: JDK1.0

capacity()

    public int capacity()

    Returns the current capacity of this vector.

    Returns: the current capacity of this vector.

Since: JDK1.0

contains(Object)

    public boolean contains(Object elem)

    Tests if the specified object is a component in this vector.

    Parameters:
       elem - an object.

    Returns: true if the specified object is a component in this vector; false otherwise.

Since: JDK1.0

copyInto(Object[])

    public synchronized void copyInto(Object[] anArray)

    Copies the components of this vector into the specified array. The array must be big enough to hold all the objects in this vector.

    Parameters:
       anArray - the array into which the components get copied.

Since: JDK1.0

elementAt(int)

    public synchronized Object elementAt(int index)

    Returns the component at the specified index.

    Parameters:
       index - an index into this vector.

    Returns: the component at the specified index.

    Throws: ArrayIndexOutOfBoundsException - if an invalid index was given.

Since: JDK1.0

elements()

    public synchronized Enumeration elements()
Returns an enumeration of the components of this vector.

**Returns:** an enumeration of the components of this vector.

**Since:** JDK1.0

**See Also:** [Enumeration](#)

### ensureCapacity(int)

```java
public synchronized void ensureCapacity(int minCapacity)
```

Increases the capacity of this vector, if necessary, to ensure that it can hold at least the number of components specified by the minimum capacity argument.

**Parameters:**
- `minCapacity` - the desired minimum capacity.

**Since:** JDK1.0

### firstElement()

```java
public synchronized Object firstElement()
```

Returns the first component of this vector.

**Returns:** the first component of this vector.

**Throws:** [NoSuchElementException](#) - if this vector has no components.

**Since:** JDK1.0

### indexOf(Object)

```java
public int indexOf(Object elem)
```

Searches for the first occurrence of the given argument, testing for equality using the `equals` method.

**Parameters:**
- `elem` - an object.

**Returns:** the index of the first occurrence of the argument in this vector; returns −1 if the object is not found.

**Since:** JDK1.0

**See Also:** [equals(Object)](#)

### indexOf(Object, int)

```java
public synchronized int indexOf(Object elem, int index)
```

Searches for the first occurrence of the given argument, beginning the search at `index`, and testing for equality using the `equals` method.

**Parameters:**
- `elem` - an object.
- `index` - the index to start searching from.
insertElementAt(Object, int)

public synchronized void insertElementAt(Object obj, int index)

Inserts the specified object as a component in this vector at the specified index. Each component in this vector with an index greater or equal to the specified index is shifted upward to have an index one greater than the value it had previously.

The index must be a value greater than or equal to 0 and less than or equal to the current size of the vector.

Parameters:
  obj - the component to insert.
  index - where to insert the new component.

Throws: ArrayIndexOutOfBoundsException - if the index was invalid.

Since: JDK1.0

See Also: size()
Returns:  the index of the last occurrence of the specified object in this vector; returns -1 if the object is not found.
Since:  JDK1.0

lastIndexOf(Object, int)

public synchronized int lastIndexOf(Object elem, int index)

Searches backwards for the specified object, starting from the specified index, and returns an index to it.

Parameters:
   elem - the desired component.
   index - the index to start searching from.

Returns:  the index of the last occurrence of the specified object in this vector at position less than index in the vector; -1 if the object is not found.
Since:  JDK1.0

removeAllElements()

public synchronized void removeAllElements()

Removes all components from this vector and sets its size to zero.
Since:  JDK1.0

removeElement(Object)

public synchronized boolean removeElement(Object obj)

Removes the first occurrence of the argument from this vector. If the object is found in this vector, each component in the vector with an index greater or equal to the object's index is shifted downward to have an index one smaller than the value it had previously.

Parameters:
   obj - the component to be removed.

Returns:  true if the argument was a component of this vector; false otherwise.
Since:  JDK1.0

removeElementAt(int)

public synchronized void removeElementAt(int index)

Deletes the component at the specified index. Each component in this vector with an index greater or equal to the specified index is shifted downward to have an index one smaller than the value it had previously.

The index must be a value greater than or equal to 0 and less than the current size of the vector.

Parameters:
   index - the index of the object to remove.

Throws:  ArrayIndexOutOfBoundsException - if the index was invalid.
Since:  JDK1.0
**Vector**

**setElementAt( object, int )**

public synchronized void setElementAt( Object obj, int index)

Sets the component at the specified index of this vector to be the specified object. The previous component at that position is discarded.

The index must be a value greater than or equal to 0 and less than the current size of the vector.

**Parameters:**
- obj: what the component is to be set to.
- index: the specified index.

**Throws:** ArrayIndexOutOfBoundsException - if the index was invalid.

**Since:** JDK1.0

**See Also:** size()

---

**setSize( int )**

public synchronized void setSize( int newSize)

Sets the size of this vector. If the new size is greater than the current size, new null items are added to the end of the vector. If the new size is less than the current size, all components at index newSize and greater are discarded.

**Parameters:**
- newSize: the new size of this vector.

**Since:** JDK1.0

**size()**

public int size()

Returns the number of components in this vector.

**Returns:** the number of components in this vector.

**Since:** JDK1.0

**toString()**

public synchronized String toString()

Returns a string representation of this vector.

**Overrides:** toString() in class Object

**Returns:** a string representation of this vector.

**Since:** JDK1.0

---

**trimToSize()**
public synchronized void trimToSize()

Trims the capacity of this vector to be the vector's current size. An application can use this operation to minimize the storage of a vector.

Since: JDK1.0
<table>
<thead>
<tr>
<th>Vector</th>
<th>java.util</th>
</tr>
</thead>
<tbody>
<tr>
<td>trimToSize()</td>
<td></td>
</tr>
</tbody>
</table>
Package
javax.microedition.io

Description
The classes for the generic connections.

Since: CLDC 1.0

Class Summary

<table>
<thead>
<tr>
<th>Interfaces</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection</td>
<td>This is the most basic type of generic connection.</td>
</tr>
<tr>
<td>ContentConnection</td>
<td>This interface defines the stream connection over which content is passed.</td>
</tr>
<tr>
<td>Datagram</td>
<td>This is the generic datagram interface.</td>
</tr>
<tr>
<td>DatagramConnection</td>
<td>This interface defines the capabilities that a datagram connection must have.</td>
</tr>
<tr>
<td>InputConnection</td>
<td>This interface defines the capabilities that an input stream connection must have.</td>
</tr>
<tr>
<td>OutputConnection</td>
<td>This interface defines the capabilities that an output stream connection must have.</td>
</tr>
<tr>
<td>StreamConnection</td>
<td>This interface defines the capabilities that a stream connection must have.</td>
</tr>
<tr>
<td>StreamConnectionNotifier</td>
<td>This interface defines the capabilities that a connection notifier must have.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>This class is a placeholder for the static methods that are used for creating all the Connection objects.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exceptions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConnectionNotFoundException</td>
<td>This class is used to signal that a connection target cannot be found.</td>
</tr>
</tbody>
</table>
javax.microedition.io

Connection

Syntax

public abstract interface Connection

All Known Subinterfaces: ContentConnection, DatagramConnection, InputConnection, OutputConnection, StreamConnection, StreamConnectionNotifier

Description

This is the most basic type of generic connection. Only the close method is defined. The open method defined here because opening is always done by the Connector.open() methods.

Member Summary

<table>
<thead>
<tr>
<th>Methods</th>
<th>Close the connection.</th>
</tr>
</thead>
<tbody>
<tr>
<td>close()</td>
<td>Close the connection.</td>
</tr>
</tbody>
</table>

Methods

close()

public void close()

Close the connection.

When a connection has been closed, access to any of its methods except this close() will cause an an IOException to be thrown. Closing an already closed connection has no effect. Streams derived from the connection may be open when method is called. Any open streams will cause the connection to be held open until they themselves are closed. In this latter case access to the open streams is permitted, but access to the connection is not.

Throws: IOException - If an I/O error occurs
javax.microedition.io

ConnectionNotFoundException

Syntax
public class ConnectionNotFoundException extends IOException

Object
    +-- Throwable
        +-- Exception
            +-- RuntimeException
                +-- IOException
                    +-- javax.microedition.io.ConnectionNotFoundException

Description
This class is used to signal that a connection target cannot be found.

Member Summary

Constructors
ConnectionNotFoundException()
Constructs a ConnectionNotFoundException with no detail message.

ConnectionNotFoundException(String)
Constructs a ConnectionNotFoundException with the specified detail message.

Inherited Member Summary

Methods inherited from class Throwable
getMessage(), toString(), printStackTrace()

Methods inherited from class Object
class(), hashCode(), equals(Object), notify(), notifyAll(), wait(long), wait(long, int), wait()
ConnectionNotFoundException
javax.microedition.io

ConnectionNotFoundException(String)

public ConnectionNotFoundException(String s)

Constructs a ConnectionNotFoundException with the specified detail message. A detail message is a String that describes this particular exception.

Parameters:

s - the detail message
javax.microedition.io

Connector

Syntax

```java
public class Connector
```

Object

```
 +-- javax.microedition.io.Connector
```

Description

This class is a placeholder for the static methods that are used for creating all the Connection objects.

The creation of Connections is performed dynamically by looking up a protocol implementation class whose name is formed from the platform name (read from a system property) and the protocol name of the requested connection (extracted from the parameter string supplied by the application programmer.) The parameter string that describes the target should conform to the URL format as described in RFC 2396. This takes the general form:

```plaintext
{scheme}:[/{target}][/{parms}]
```

where `{scheme}` is the name of a protocol such as `http`.

The `{target}` is normally some kind of network address.

Any `{parms}` are formed as a series of equates of the form ";x=y". Example: ";type=a".

An optional second parameter may be specified to the open function. This is a mode flag that indicates to the protocol handler the intentions of the calling code. The options here specify if the connection is going to be read (READ), written (WRITE), or both (READ_WRITE). The validity of these flag settings is protocol dependent. For instance, a connection for a printer would not allow read access, and would throw an IllegalArgumentException. If the mode parameter is not specified, READ_WRITE is used by default.

An optional third parameter is a boolean flag that indicates if the calling code can handle timeout exceptions. If this flag is set, the protocol implementation may throw an InterruptedIOException when it detects a timeout condition. This flag is only a hint to the protocol handler, and it does not guarantee that such exceptions will actually be thrown. If this parameter is not set, no timeout exceptions will be thrown.

Because connections are frequently opened just to gain access to a specific input or output stream, four convenience functions are provided for this purpose. See also: [DatagramConnection](#) for information relating to datagram addressing

<table>
<thead>
<tr>
<th>Member Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fields</strong></td>
</tr>
<tr>
<td>READ</td>
</tr>
<tr>
<td>READ_WRITE</td>
</tr>
<tr>
<td>WRITE</td>
</tr>
<tr>
<td><strong>Methods</strong></td>
</tr>
<tr>
<td>open(String)</td>
</tr>
<tr>
<td>open(String, int)</td>
</tr>
</tbody>
</table>
Member Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>open(String, int, boolean)</code></td>
<td>Create and open a Connection.</td>
</tr>
<tr>
<td><code>openDataInputStream(String)</code></td>
<td>Create and open a connection input stream.</td>
</tr>
<tr>
<td><code>openDataOutputStream(String)</code></td>
<td>Create and open a connection output stream.</td>
</tr>
<tr>
<td><code>openInputStream(String)</code></td>
<td>Create and open a connection input stream.</td>
</tr>
<tr>
<td><code>openOutputStream(String)</code></td>
<td>Create and open a connection output stream.</td>
</tr>
</tbody>
</table>

Inherited Member Summary

Methods inherited from class `Object`
- `getClass()`, `hashCode()`, `equals(Object)`, `toString()`, `notify()`, `notifyAll()`, `wait(long)`, `wait(long, int)`, `wait()`

Fields

**READ**

```java
public static final int READ
```
Access mode READ.

**READ_WRITE**

```java
public static final int READ_WRITE
```
Access mode READ_WRITE.

**WRITE**

```java
public static final int WRITE
```
Access mode WRITE.

Methods

```java
open(String)
```
```java
public static Connection open(String name)
```
javax.microedition.io

Create and open a Connection.

**Parameters:**
- `name` - The URL for the connection.

**Returns:** A new Connection object.

**Throws:**
- `IllegalArgumentException` - If a parameter is invalid.
- `ConnectionNotFoundException` - If the requested connection cannot be make, or the protocol type does not exist.
- `IOException` - If some other kind of I/O error occurs.

---

**open(String, int)**

```java
public static Connection open(String name, int mode)
```

Create and open a Connection.

**Parameters:**
- `name` - The URL for the connection.
- `mode` - The access mode.

**Returns:** A new Connection object.

**Throws:**
- `IllegalArgumentException` - If a parameter is invalid.
- `ConnectionNotFoundException` - If the requested connection cannot be make, or the protocol type does not exist.
- `IOException` - If some other kind of I/O error occurs.

---

**open(String, int, boolean)**

```java
public static Connection open(String name, int mode, boolean timeouts)
```

Create and open a Connection.

**Parameters:**
- `name` - The URL for the connection
- `mode` - The access mode
- `timeouts` - A flag to indicate that the caller wants timeout exceptions

**Returns:** A new Connection object

**Throws:**
- `IllegalArgumentException` - If a parameter is invalid.
- `ConnectionNotFoundException` - If the requested connection cannot be make, or the protocol type does not exist.
- `IOException` - If some other kind of I/O error occurs.

---

**openDataInputStream(String)**

```java
public static DataInputStream openDataInputStream(String name)
```

Create and open a connection input stream.
Connector javax.microedition.io
openDataOutputStream(String)

Parameters:
    name - The URL for the connection.

Returns: A DataInputStream.

Throws: IllegalArgumentException - If a parameter is invalid.
        ConnectionNotFoundException - If the connection cannot be found.
        IOException - If some other kind of I/O error occurs.

openDataOutputStream(String)

public static DataOutputStream openDataOutputStream(String name)

Create and open a connection output stream.

Parameters:
    name - The URL for the connection.

Returns: A DataOutputStream.

Throws: IllegalArgumentException - If a parameter is invalid.
        ConnectionNotFoundException - If the connection cannot be found.
        IOException - If some other kind of I/O error occurs.

openInputStream(String)

public static InputStream openInputStream(String name)

Create and open a connection input stream.

Parameters:
    name - The URL for the connection.

Returns: An InputStream.

Throws: IllegalArgumentException - If a parameter is invalid.
        ConnectionNotFoundException - If the connection cannot be found.
        IOException - If some other kind of I/O error occurs.

openOutputStream(String)

public static OutputStream openOutputStream(String name)

Create and open a connection output stream.

Parameters:
    name - The URL for the connection.

Returns: An OutputStream.

Throws: IllegalArgumentException - If a parameter is invalid.
        ConnectionNotFoundException - If the connection cannot be found.
        IOException - If some other kind of I/O error occurs.
javax.microedition.io

ContentConnection

Syntax
public abstract interface ContentConnection extends StreamConnection

All Superinterfaces: Connection, InputConnection, OutputConnection, StreamConnection

Description
This interface defines the stream connection over which content is passed.

Member Summary

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>getEncoding()</td>
<td>Returns a string describing the encoding of the content which the resource connected to is providing. E.g. if the connection is via HTTP, the value of the content-encoding header field is returned.</td>
</tr>
<tr>
<td>getLength()</td>
<td>Returns the length of the content which is being provided.</td>
</tr>
<tr>
<td>getType()</td>
<td>Returns the type of content that the resource connected to is providing.</td>
</tr>
</tbody>
</table>

Inherited Member Summary

Methods inherited from interface InputConnection
openInputStream(), openDataInputStream()

Methods inherited from interface Connection
close()

Methods inherited from interface OutputConnection
openOutputStream(), openDataOutputStream()

Methods

getEncoding()

public String getEncoding()

Returns a string describing the encoding of the content which the resource connected to is providing. E.g. if the connection is via HTTP, the value of the content-encoding header field is returned.

Returns: the content encoding of the resource that the URL references, or null if not known.
**getLength()**

```java
public long getLength()
```

Returns the length of the content which is being provided. E.g. if the connection is via HTTP, then the value of the `content-length` header field is returned.

**Returns:** the content length of the resource that this connection's URL references, or `-1` if the content length is not known.

**getType()**

```java
public String getType()
```

Returns the type of content that the resource connected to is providing. For instance, if the connection is via HTTP, then the value of the `content-type` header field is returned.

**Returns:** the content type of the resource that the URL references, or `null` if not known.
Syntax
public abstract interface Datagram extends DataInput, DataOutput

All Superinterfaces: DataInput, DataOutput

Description
This is the generic datagram interface. It represents an object that will act as the holder of data to be sent or received from a datagram connection.

The DataInput and DataOutput interfaces are extended by this interface to provide a simple way to read and write binary data in and out of the datagram buffer. An additional function reset() may be called to reset the read/write point to the beginning of the buffer.

It should be noted that in the interests of reducing space and speed concerns, these mechanisms are very simple. In order to use them correctly the following restrictions should be observed:

1) The use of the standard DataInput and DataOutput interfaces is done in order to provide a familiar API for reading and writing data into and out of a Datagram buffer. It should be understood however that this is not an API to a Java stream and does not exhibit all of the features normally associated with one. The most important difference here is that a Java stream is either an InputStream or an OutputStream. The interface presented here is, essentially, both at the same time. As the datagram object does not have a mode for reading and writing, it is necessary for the application programmer to realize that no automatic detection of the wrong mode usage can be done.

2) The DataInput and DataOutput interfaces will not work with any arbitrary settings of the Datagram state variables. The main restriction here is that the offset state variable must at all times be zero. Datagrams may be used in the normal way where the offset is non-zero but when this is done the DataInput and DataOutput interfaces cannot be used.

3) The DataInput and DataOutput read() and write() functions work by using an invisible state variable of the Datagram object. Before any data is read from or written to the datagram buffer, this state variable must be zeroed using the reset() function. This variable is not the offset state variable but an additional state variable used only for the read() and write() functions.

4) Before data is to be received into the datagram's buffer, the offset state variable and the length state variable must first be set up to the part of the buffer the data should be written to. If the intention is to use the read() functions, the offset must be zero. After receive() is called, the data can be read from the buffer using the read() functions until an EOF condition is found. This will occur when the number of characters represented by the length parameter have been read.

5) To write data into the buffer prior to a send() operation, the reset() function should first be called. This will zero the read/write pointer along with the offset and length parameters of the Datagram object. Then the data can be written using the write() functions. When this process is complete, the length state variable will be set to the correct value for the send() function of the datagram's connection, and so the send operation can take place. An IndexOutOfBoundsException will be thrown if the number of characters written exceeds the size of the buffer.
**getAddress()**

```java
gpublic String getAddress()
```

Get the address in the datagram.

Returns: the address in string form, or null if no address was set

See Also: `setAddress(String)`

**getData()**

```java
gpublic byte[] getData()
```

Get the buffer.

Returns: the data buffer

See Also: `setData(byte[], int, int)`

---

**Member Summary**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>getAddress()</code></td>
<td>Get the address in the datagram.</td>
</tr>
<tr>
<td><code>getData()</code></td>
<td>Get the buffer.</td>
</tr>
<tr>
<td><code>getLength()</code></td>
<td>Get the length.</td>
</tr>
<tr>
<td><code>getOffset()</code></td>
<td>Get the offset.</td>
</tr>
<tr>
<td><code>reset()</code></td>
<td>Zero the read/write pointer as well as the offset and length parameters.</td>
</tr>
<tr>
<td><code>setAddress(Datagram)</code></td>
<td>Set datagram address, copying the address from another datagram.</td>
</tr>
<tr>
<td><code>setAddress(String)</code></td>
<td>Set datagram address.</td>
</tr>
<tr>
<td><code>setData(byte[], int, int)</code></td>
<td>Set the buffer, offset and length.</td>
</tr>
<tr>
<td><code>setLength(int)</code></td>
<td>Set the length.</td>
</tr>
</tbody>
</table>

---

**Inherited Member Summary**

Methods inherited from interface `DataInput`

- `readFully(byte[])`
- `readFully(byte[], int, int)`
- `skipBytes(int)`
- `readBoolean()`
- `readByte()`
- `readUnsignedByte()`
- `readShort()`
- `readUnsignedShort()`
- `readChar()`
- `readInt()`
- `readLong()`
- `readUTF()`

Methods inherited from interface `DataOutput`

- `write(int)`
- `write(byte[])`
- `write(byte[], int, int)`
- `writeBoolean(boolean)`
- `writeByte(int)`
- `writeShort(int)`
- `writeChar(int)`
- `writeInt(int)`
- `writeLong(long)`
- `writeChars(String)`
- `writeUTF(String)`
getLength()

    public int getLength()
    Get the length.
    Returns:  the length of the data
    See Also:  setLength(int)

getOffset()

    public int getOffset()
    Get the offset.
    Returns:  the offset into the data buffer

reset()

    public void reset()
    Zero the read/write pointer as well as the offset and length parameters.

setAddress(Datagram)

    public void setAddress(Datagram reference)
    Set datagram address, copying the address from another datagram.
    Parameters:
    reference - the datagram who's address will be copied as the new target address for this datagram.
    Throws:  IllegalArgumentException - if the address is not valid
    See Also:  getAddress()

setAddress(String)

    public void setAddress(String addr)
    Set datagram address.
    The actual addressing scheme is implementation-dependent. Please read the general comments on datagram addressing in DatagramConnection.java.
    Note that if the address of a datagram is not specified, then it defaults to that of the connection.
    Parameters:
    addr - the new target address as a URL
    Throws:  IllegalArgumentException - if the address is not valid
             IOException - if a some kind of I/O error occurs
    See Also:  getAddress()

setData(byte[], int, int)
public void setData(byte[] buffer, int offset, int len)

Set the buffer, offset and length.

Parameters:
   buffer - the data buffer
   offset - the offset into the data buffer
   len - the length of the data in the buffer

Throws: IllegalArgumentException - if the length or offset fall outside the buffer

See Also: getData()

public void setLength(int len)

Set the length.

Parameters:
   len - the new length of the data

Throws: IllegalArgumentException - if the length is negative or larger than the buffer

See Also: getLength()
javax.microedition.io

DatagramConnection

Syntax
public abstract interface DatagramConnection extends Connection

All Superinterfaces: Connection

Description
This interface defines the capabilities that a datagram connection must have.

Reminder: In common with all the other addressing schemes used for I/O in CLDC, the syntax for datagram addressing is not defined in the CLDC Specification. Syntax definition can only take place at the profile level. The reason for this is that the datagram interface classes of CLDC can be used for implementing various kinds of datagram protocols. Examples include IP and WDP networks as well as infrared beaming protocols used by various PDAs and other devices. All these protocols use very different addressing mechanisms.

In the sample implementation provided as part of the CLDC reference implementation, the following addressing scheme is used for UDP datagrams.

The parameter string describing the target of a connection in the CLDC reference implementation takes the following form:

{protocol}://[{host}]:[{port}]

A datagram connection can be opened in a "client" mode or "server" mode. If the "//{{host}}" part is missing then the connection is opened as a "server" (by "server", we mean that a client application initiates communication). When the "//{{host}}" part is specified, the connection is opened as a "client".

Examples:
A datagram connection for accepting datagrams
datagram://:1234

A datagram connection for sending to a server:
datagram://123.456.789.12:1234

Note that the port number in "server mode" (unspecified host name) is that of the receiving port. The port number in "client mode" (host name specified) is that of the target port. The reply-to port in both cases is never unspecified. In "server mode", the same port number is used for both receiving and sending. In "client mode", the reply-to port is always dynamically allocated.

The allocation of datagram objects is done in a more abstract way than in J2SE. This is to allow a single platform to support several different datagram interfaces simultaneously. Datagram objects must be allocated by calling the "newDatagram" method of the DatagramConnection object. The resulting object is defined using another interface type called "javax.microedition.io.Datagram".

Member Summary

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>getMaximumLength()</td>
<td>Get the maximum length a datagram can be.</td>
</tr>
</tbody>
</table>
DatagramConnection javax.microedition.io

getMaximumLength()

Methods

**getMaximumLength()**

```
public int getMaximumLength()
```

Get the maximum length a datagram can be.

**Returns:** The maximum length a datagram can be.

**Throws:** `IOException` - If an I/O error occurs.

**getNominalLength()**

```
public int getNominalLength()
```

Get the nominal length of a datagram.

**Returns:** The nominal length a datagram can be.

**Throws:** `IOException` - If an I/O error occurs.

**newDatagram(byte[], int)**

```
public Datagram newDatagram(byte[] buf, int size)
```

Make a new datagram object.

**Parameters:**

- `buf` - The buffer to be used in the datagram
- `size` - The length of the buffer to be allocated for the datagram

Inherited Member Summary

Methods inherited from interface `Connection`

- `close()`
newDatagram(byte[], int, String)

public Datagram newDatagram(byte[] buf, int size, String addr)

Make a new datagram object.

Parameters:

buf - The buffer to be used in the datagram
size - The length of the buffer to be used
addr - The I/O address to which the datagram will be sent

Returns: A new datagram

Throws: IOException - If an I/O error occurs.
IllegalArgumentException - if the length is negative or larger than the buffer, or if the buffer or address parameter is invalid

newDatagram(int)

public Datagram newDatagram(int size)

Make a new datagram object automatically allocating a buffer.

Parameters:

size - The length of the buffer to be allocated for the datagram

Returns: A new datagram

Throws: IOException - If an I/O error occurs.
IllegalArgumentException - if the length is negative or larger than the buffer

newDatagram(int, String)

public Datagram newDatagram(int size, String addr)

Make a new datagram object.

Parameters:

size - The length of the buffer to be used
addr - The I/O address to which the datagram will be sent

Returns: A new datagram

Throws: IOException - If an I/O error occurs.
IllegalArgumentException - if the length is negative or larger than the buffer, or if the address parameter is invalid
DatagramConnection javax.microedition.io

receive(Datagram)

public void receive(Datagram dgram)
Receive a datagram.

Parameters:
   dgram - A datagram.

Throws:  IOException - If an I/O error occurs.
           InterruptedException - Timeout or upon closing the connection with outstanding I/O.

send(Datagram)

public void send(Datagram dgram)
Send a datagram.

Parameters:
   dgram - A datagram.

Throws:  IOException - If an I/O error occurs.
           InterruptedException - Timeout or upon closing the connection with outstanding I/O.
javax.microedition.io

InputConnection

Syntax
public abstract interface InputConnection extends Connection

All Known Subinterfaces: ContentConnection, StreamConnection

All Superinterfaces: Connection

Description
This interface defines the capabilities that an input stream connection must have.

Member Summary

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>openDataInputStream()</td>
<td>Open and return a data input stream for a connection.</td>
</tr>
<tr>
<td>openInputStream()</td>
<td>Open and return an input stream for a connection.</td>
</tr>
</tbody>
</table>

Inherited Member Summary

<table>
<thead>
<tr>
<th>Methods inherited from interface Connection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>close()</td>
<td></td>
</tr>
</tbody>
</table>

Methods

openDataInputStream()

```
public DataInputStream openDataInputStream()
```

Open and return a data input stream for a connection.

Returns: An input stream

Throws: IOException - If an I/O error occurs

openInputStream()

```
public InputStream openInputStream()
```

Open and return an input stream for a connection.
InputConnection

javax.microedition.io

openInputStream()

Returns: An input stream

Throws: IOException - If an I/O error occurs
javax.microedition.io

OutputConnection

Syntax
public abstract interface OutputConnection extends Connection

All Known Subinterfaces:  ContentConnection, StreamConnection

All Superinterfaces:  Connection

Description
This interface defines the capabilities that an output stream connection must have.

Member Summary

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>openDataOutputStream()</td>
<td>Open and return a data output stream for a connection.</td>
</tr>
<tr>
<td>openOutputStream()</td>
<td>Open and return an output stream for a connection.</td>
</tr>
</tbody>
</table>

Inherited Member Summary

<table>
<thead>
<tr>
<th>Methods inherited from interface Connection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>close()</td>
<td></td>
</tr>
</tbody>
</table>

Methods

openDataOutputStream()

public DataOutputStream openDataOutputStream()

Open and return a data output stream for a connection.

Returns:  An output stream

Throws:  IOException - If an I/O error occurs

openOutputStream()

public OutputStream openOutputStream()
Open and return an output stream for a connection.

Returns: An output stream

Throws: IOException - If an I/O error occurs
javax.microedition.io

StreamConnection

Syntax
public abstract interface StreamConnection extends InputConnection, OutputConnection

All Known Subinterfaces: ContentConnection

All Superinterfaces: Connection, InputConnection, OutputConnection

Description
This interface defines the capabilities that a stream connection must have.

<table>
<thead>
<tr>
<th>Inherited Member Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods inherited from interface InputConnection</td>
</tr>
<tr>
<td>Methods inherited from interface Connection</td>
</tr>
<tr>
<td>Methods inherited from interface OutputConnection</td>
</tr>
</tbody>
</table>
StreamConnectionNotifier

javax.microedition.io

Syntax

public abstract interface StreamConnectionNotifier extends Connection

All Superinterfaces: Connection

Description

This interface defines the capabilities that a connection notifier must have.

Member Summary

Methods

acceptAndOpen() Returns a StreamConnection that represents a server side socket connection.

Inherited Member Summary

Methods inherited from interface Connection

close()
Index

A

abs(int) - of java.lang.Math 138
abs(long) - of java.lang.Math 139
acceptAndOpen() - of javax.microedition.io.StreamConnectionNotifier 276
activeCount() - of java.lang.Thread 201
addElement(Object) - of java.util.Vector 245
after(Object) - of java.util.Calendar 216
AM - of java.util.Calendar 212
AM_PM - of java.util.Calendar 212
append(boolean) - of java.lang.StringBuffer 183
append(char) - of java.lang.StringBuffer 183
append(char[]) - of java.lang.StringBuffer 184
append(char[], int, int) - of java.lang.StringBuffer 184
append(int) - of java.lang.StringBuffer 184
append(long) - of java.lang.StringBuffer 185
append(Object) - of java.lang.StringBuffer 185
append(String) - of java.lang.StringBuffer 185
APRIL - of java.util.Calendar 212
ArithmeticException - of java.lang 83
ArithmeticException() - of java.lang.ArithmeticException 83
ArithmeticException(String) - of java.lang.ArithmeticException 84
arraycopy(Object, int, Object, int, int) - of java.lang.System 196
ArrayIndexOutOfBoundsException - of java.lang 85
ArrayIndexOutOfBoundsException() - of java.lang.ArrayIndexOutOfBoundsException 86
ArrayIndexOutOfBoundsException(int) - of java.lang.ArrayIndexOutOfBoundsException 86
ArrayIndexOutOfBoundsException(String) - of java.lang.ArrayIndexOutOfBoundsException 86
ArrayStoreException - of java.lang 87
ArrayStoreException() - of java.lang.ArrayStoreException 88
ArrayStoreException(String) - of java.lang.ArrayStoreException 88
AUGUST - of java.util.Calendar 212
available() - of java.io.ByteArrayInputStream 11
available() - of java.io.DataInputStream 25
available() - of java.io.InputStream 45

B

before(Object) - of java.util.Calendar 216
Boolean - of java.lang 89
Boolean(boolean) - of java.lang.Boolean 89
booleanValue() - of java.lang.Boolean 90
buf - of java.io.ByteArrayInputStream 10
buf - of java.io.ByteArrayOutputStream 15
Byte - of java.lang 91
Byte(byte) - of java.lang.Byte 92
ByteArrayInputStream - of java.io 9
ByteArrayInputStream(byte[]) - of java.io.ByteArrayInputStream 10
ByteArrayInputStream(byte[], int, int) - of java.io.ByteArrayInputStream 11
Index

ByteArrayOutputStream - of java.io 14
ByteArrayOutputStream() - of java.io.ByteArrayOutputStream 15
ByteArrayOutputStream(int) - of java.io.ByteArrayOutputStream 15
bytesTransferred - of java.io.InterruptedIOException 53
byteValue() - of java.lang.Byte 92
byteValue() - of java.lang.Integer 125

C

Calendar - of java.util 210
Calendar() - of java.util.Calendar 216
capacity() - of java.lang.StringBuffer 186
capacity() - of java.util.Vector 246
capacityIncrement - of java.util.Vector 244
Character - of java.lang 94
Character(char) - of java.lang.Character 95
charAt(int) - of java.lang.String 169
charAt(int) - of java.lang.StringBuffer 186
charValue() - of java.lang.Character 96
checkError() - of java.io.PrintStream 63
Class - of java.lang 99
ClassCastException - of java.lang 104
ClassCastException() - of java.lang.ClassCastException 105
ClassCastException(String) - of java.lang.ClassCastException 105
ClassNotFoundException - of java.lang 106
ClassNotFoundException() - of java.lang.ClassNotFoundException 106
ClassNotFoundException(String) - of java.lang.ClassNotFoundException 107
clear() - of java.util.Hashtable 229
close() - of java.io.ByteArrayInputStream 11
close() - of java.io.ByteArrayOutputStream 16
close() - of java.io.DataInputStream 26
close() - of java.io.DataOutputStream 38
close() - of java.io.InputStream 45
close() - of java.io.InputStreamReader 50
close() - of java.io.OutputStream 57
close() - of java.io.OutputStreamWriter 60
close() - of java.io.PrintStream 63
close() - of java.io.Reader 69
close() - of java.io.Writer 77
close() - of javax.microedition.io.Connection 254
compareTo(String) - of java.lang.String 170
concat(String) - of java.lang.String 170
Connection - of javax.microedition.io 254
ConnectionNotFoundException - of javax.microedition.io 255
ConnectionNotFoundException() - of javax.microedition.io.ConnectionNotFoundException 255
ConnectionNotFoundException(String) - of javax.microedition.io.ConnectionNotFoundException 256
Connector - of javax.microedition.io 257
contains(Object) - of java.util.Hashtable 229
contains(Object) - of java.util.Vector 246
containsKey(Object) - of java.util.Hashtable 229
<table>
<thead>
<tr>
<th>Term</th>
<th>Class/Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContentConnection</td>
<td>javax.microedition.io</td>
</tr>
<tr>
<td>copyInto(Object[])</td>
<td>java.util.Vector</td>
</tr>
<tr>
<td>count</td>
<td>java.io.ByteArrayInputStream</td>
</tr>
<tr>
<td>count</td>
<td>java.io.ByteArrayOutputStream</td>
</tr>
<tr>
<td>currentThread()</td>
<td>java.lang.Thread</td>
</tr>
<tr>
<td>currentTimeMillis()</td>
<td>java.lang.System</td>
</tr>
<tr>
<td>Datagram</td>
<td>javax.microedition.io</td>
</tr>
<tr>
<td>DatagramConnection</td>
<td>javax.microedition.io</td>
</tr>
<tr>
<td>DataInput</td>
<td>java.io</td>
</tr>
<tr>
<td>DataInputStream</td>
<td>java.io.DataInputStream</td>
</tr>
<tr>
<td>DataOutputStream</td>
<td>java.io.DataOutputStream</td>
</tr>
<tr>
<td>Date()</td>
<td>java.util.Date</td>
</tr>
<tr>
<td>Date(long)</td>
<td>java.util.Date</td>
</tr>
<tr>
<td>DAY_OF_MONTH</td>
<td>java.util.Calendar</td>
</tr>
<tr>
<td>DAY_OF_WEEK</td>
<td>java.util.Calendar</td>
</tr>
<tr>
<td>DECEMBER</td>
<td>java.util.Calendar</td>
</tr>
<tr>
<td>delete(int, int)</td>
<td>java.lang.StringBuffer</td>
</tr>
<tr>
<td>deleteCharAt(int)</td>
<td>java.lang.StringBuffer</td>
</tr>
<tr>
<td>digit(char, int)</td>
<td>java.lang.Character</td>
</tr>
<tr>
<td>elementAt(int)</td>
<td>java.util.Vector</td>
</tr>
<tr>
<td>elementCount</td>
<td>java.util.Vector</td>
</tr>
<tr>
<td>elementData</td>
<td>java.util.Vector</td>
</tr>
<tr>
<td>elements()</td>
<td>java.util.Hashtable</td>
</tr>
<tr>
<td>elements()</td>
<td>java.util.Vector</td>
</tr>
<tr>
<td>empty()</td>
<td>java.util.Stack</td>
</tr>
<tr>
<td>EmptyStackException</td>
<td>java.util.EmptyStackException</td>
</tr>
<tr>
<td>ensureCapacity(int)</td>
<td>java.lang.StringBuffer</td>
</tr>
<tr>
<td>ensureCapacity(int)</td>
<td>java.util.Vector</td>
</tr>
<tr>
<td>enumeration</td>
<td>java.util.Integer</td>
</tr>
<tr>
<td>equals(Object)</td>
<td>java.lang.Boolean</td>
</tr>
<tr>
<td>EOFException</td>
<td>java.io.EOFException</td>
</tr>
<tr>
<td>EOFException()</td>
<td>java.io.EOFException</td>
</tr>
<tr>
<td>EOFException(String)</td>
<td>java.io.EOFException</td>
</tr>
<tr>
<td>equals(Object)</td>
<td>java.lang.Boolean</td>
</tr>
<tr>
<td>equals(Object)</td>
<td>java.lang.Byte</td>
</tr>
<tr>
<td>equals(Object)</td>
<td>java.lang.Character</td>
</tr>
<tr>
<td>equals(Object)</td>
<td>java.lang.Integer</td>
</tr>
<tr>
<td>equals(Object)</td>
<td>java.lang.Long</td>
</tr>
</tbody>
</table>

279
equals(Object) - of java.lang.Object 148
equals(Object) - of java.lang.Short 163
equals(Object) - of java.lang.String 171
equals(Object) - of java.util.Calendar 216
equals(Object) - of java.util.Date 221
err - of java.lang.System 195
Error - of java.lang 108
Error() - of java.lang.Error 108
Error(String) - of java.lang.Error 109
Exception - of java.lang 110
Exception() - of java.lang.Exception 111
Exception(String) - of java.lang.Exception 111
exit(int) - of java.lang.Runtime 156
exit(int) - of java.lang.System 197

F

FEBRUARY - of java.util.Calendar 213
firstElement() - of java.util.Vector 247
flush() - of java.io.DataOutputStream 39
flush() - of java.io.OutputStream 57
flush() - of java.io.OutputStreamWriter 60
flush() - of java.io.PrintStream 64
flush() - of java.io.Writer 78
forName(String) - of java.lang.Class 100
freeMemory() - of java.lang.Runtime 157
FRIDAY - of java.util.Calendar 213

G

gc() - of java.lang.Runtime 157
gc() - of java.lang.System 198
get(int) - of java.util.Calendar 217
get(Object) - of java.util.Hashtable 229
getAddress() - of javax.microedition.io.Datagram 264
getAvailableIDs() - of java.util.TimeZone 241
getBytes() - of java.lang.String 171
getBytes(String) - of java.lang.String 171
getChars(int, int, char[], int) - of java.lang.String 172
getChars(int, int, char[], int) - of java.lang.StringBuffer 187
getClass() - of java.lang.Object 148
getData() - of javax.microedition.io.Datagram 264
getDefault() - of java.util.TimeZone 241
getEncoding() - of javax.microedition.io.ContentConnection 261
getID() - of java.util.TimeZone 241
getInstance() - of java.util.Calendar 217
getInstance(TimeZone) - of java.util.Calendar 217
getLength() - of javax.microedition.io.ContentConnection 262
getLength() - of javax.microedition.io.Datagram 265
getMaximumLength() - of javax.microedition.io.DatagramConnection 268
getMessage() - of java.lang.Throwable 205
getName() - of java.lang.Class 100
getNominalLength() - of javax.microedition.io.DatagramConnection 268
getOffset() - of javax.microedition.io.Datagram 265
getOffset(int, int, int, int, int) - of java.util.TimeZone 241
getPriority() - of java.lang.Thread 202
getProperty(String) - of java.lang.System 198
getRawOffset() - of java.util.TimeZone 242
getResourceAsStream(String) - of java.lang.Class 101
getRuntime() - of java.lang.Runtime 157
time() - of java.util.Calendar 217
time() - of java.util.Date 222
timeInMillis() - of java.util.Calendar 217
getTimeZone() - of java.util.Calendar 218
timeZone(String) - of java.util.TimeZone 242
type() - of javax.microedition.io.ContentConnection 262

H
hashCode() - of java.lang.Boolean 90
hashCode() - of java.lang.Byte 92
hashCode() - of java.lang.Character 96
hashCode() - of java.lang.Integer 126
hashCode() - of java.lang.Long 134
hashCode() - of java.lang.Object 148
hashCode() - of java.lang.Short 163
hashCode() - of java.lang.String 172
HashCode - of java.util.Hashtable 227
Hashtable() - of java.util.Hashtable 228
Hashtable(int) - of java.util.Hashtable 228
hasMoreElements() - of java.util Enumeration 225
HOUR - of java.util.Calendar 213
HOUR_OF_DAY - of java.util.Calendar 213

I
identityHashCode(Object) - of java.lang.System 198
IllegalAccessException - of java.lang 112
IllegalAccessException() - of java.lang.IllegalArgumentException 113
IllegalAccessException(String) - of java.lang.IllegalArgumentException 113
IllegalArgumentException - of java.lang 114
IllegalArgumentException() - of java.lang.IllegalArgumentException 115
IllegalArgumentException(String) - of java.lang.IllegalArgumentException 115
IllegalMonitorStateException - of java.lang 116
IllegalMonitorStateException() - of java.lang.IllegalArgumentException 117
IllegalMonitorStateException(String) - of java.lang.IllegalArgumentException 117
IllegalStateException - of java.lang 118
IllegalStateException() - of java.lang.IllegalArgumentException 119
IllegalStateException(String) - of java.lang.IllegalArgumentException 119
Index

in - of java.io.DataInputStream 25
indexOf(int) - of java.lang.String 172
indexOf(int, int) - of java.lang.String 173
indexOf(Object) - of java.util.Vector 247
indexOf(Object, int) - of java.util.Vector 247
indexOf(String) - of java.lang.String 173
indexOf(String, int) - of java.lang.String 174
IndexOutOfBoundsException - of java.lang 120
IndexOutOfBoundsException() - of java.lang.IndexOutOfBoundsException 121
IndexOutOfBoundsException(String) - of java.lang.IndexOutOfBoundsException 121
InputConnection - of javax.microedition.io 271
InputStream - of java.io 44
InputStream() - of java.io.InputStream 45
InputStreamReader - of java.io 49
InputStreamReader(InputStream) - of java.io.InputStreamReader 50
InputStreamReader(InputStream, String) - of java.io.InputStreamReader 50
insert(int, boolean) - of java.lang.StringBuffer 187
insert(int, char) - of java.lang.StringBuffer 188
insert(int, char[]) - of java.lang.StringBuffer 188
insert(int, int) - of java.lang.StringBuffer 189
insert(int, long) - of java.lang.StringBuffer 189
insert(int, Object) - of java.lang.StringBuffer 189
insert(int, String) - of java.lang.StringBuffer 190
insertElementAt(Object, int) - of java.util.Vector 248
InstantiationException - of java.lang 122
InstantiationException() - of java.lang.InstantiationException 122
InstantiationException(String) - of java.lang.InstantiationException 123
intValue() - of java.lang.Integer 126
IOException - of java.io 54
IOException() - of java.io.IOException 55
IOException(String) - of java.io.IOException 55
isAlive() - of java.lang.Thread 202
isArray() - of java.lang.Class 101
isAssignableFrom(Class) - of java.lang.Class 101
isDigit(char) - of java.lang.Character 96
isEmpty() - of java.util.Hashtable 230
isEmpty() - of java.util.Vector 248
isInstance(Object) - of java.lang.Class 102
isInterface() - of java.lang.Class 102
isLowerCase(char) - of java.lang.Character 97
isUpperCase(char) - of java.lang.Character 97
J
JANUARY - of java.util.Calendar 213
java.io - package 7
java.lang - package 81
java.util - package 209
javax.microedition.io - package 253
join() - of java.lang.Thread 202
JULY - of java.util.Calendar 214
JUNE - of java.util.Calendar 214

K
keys() - of java.util.Hashtable 230

L
lastElement() - of java.util.Vector 248
lastIndexOf(int) - of java.lang.String 174
lastIndexOf(int, int) - of java.lang.String 174
lastIndexOf( Object ) - of java.util.Vector 248
lastIndexOf( Object, int ) - of java.util.Vector 249
length() - of java.lang.String 175
length() - of java.lang.StringBuffer 190
lock - of java.io.Reader 69
lock - of java.io.Writer 77
Long - of java.lang 133
Long(long) - of java.lang.Long 134
longValue() - of java.lang.Integer 126
longValue() - of java.lang.Long 135

M
MARCH - of java.util.Calendar 214
mark - of java.io.ByteArrayInputStream 10
mark(int) - of java.io.ByteArrayInputStream 11
mark(int) - of java.io.DataInputStream 26
mark(int) - of java.io.InputStream 45
mark(int) - of java.io.InputStreamReader 50
mark(int) - of java.io.Reader 70
markSupported() - of java.io.ByteArrayInputStream 12
markSupported() - of java.io.DataInputStream 26
markSupported() - of java.io.InputStream 46
markSupported() - of java.io.InputStreamReader 51
markSupported() - of java.io.Reader 70
Math - of java.lang 138
max(int, int) - of java.lang.Math 139
max(long, long) - of java.lang.Math 139
MAX_PRIORITY - of java.lang.Thread 201
MAX_RADIX - of java.lang.Character 95
MAX_VALUE - of java.lang.Byte 91
MAX_VALUE - of java.lang.Character 95
MAX_VALUE - of java.lang.Integer 125
MAX_VALUE - of java.lang.Long 134
MAX_VALUE - of java.lang.Short 162
MAY - of java.util.Calendar 214
MILLISECOND - of java.util.Calendar 214
min(int, int) - of java.lang.Math 139
min(long, long) - of java.lang.Math 140
MIN_PRIORITY - of java.lang.Thread 201
MIN_RADIX - of java.lang.Character 95
MIN_VALUE - of java.lang.Byte 92
MIN_VALUE - of java.lang.Character 95
MIN_VALUE - of java.lang.Integer 125
MIN_VALUE - of java.lang.Long 134
MIN_VALUE - of java.lang.Short 163
MINUTE - of java.util.Calendar 214
MONDAY - of java.util.Calendar 214
MONTH - of java.util.Calendar 214

N
NegativeArraySizeException - of java.lang 141
NegativeArraySizeException() - of java.lang.NegativeArraySizeException 141
NegativeArraySizeException(String) - of java.lang.NegativeArraySizeException 142
newDatagram(byte[], int) - of javax.microedition.io.DatagramConnection 268
newDatagram(byte[], int, String) - of javax.microedition.io.DatagramConnection 269
newDatagram(int) - of javax.microedition.io.DatagramConnection 269
newDatagram(int, String) - of javax.microedition.io.DatagramConnection 269
newInstance() - of java.lang.Class 102
next(int) - of java.util.Random 235
nextElement() - of java.utilEnumeration 225
nextInt() - of java.util.Random 236
nextLong() - of java.util.Random 236
NORM_PRIORITY - of java.lang.Thread 201
NoSuchElementException - of java.util 232
NoSuchElementException() - of java.util.NoSuchElementException 233
NoSuchElementException(String) - of java.util.NoSuchElementException 233
notify() - of java.lang.Object 149
notifyAll() - of java.lang.Object 149
NOVEMBER - of java.util.Calendar 215
NullPointerException - of java.lang 143
NullPointerException() - of java.langNullPointerException 144
NullPointerException(String) - of java.langNullPointerException 144
NumberFormatException - of java.lang 145
NumberFormatException() - of java.langNumberFormatException 146
NumberFormatException(String) - of java.langNumberFormatException 146

O
Object - of java.lang 147
Object() - of java.lang.Object 147
OCTOBER - of java.util.Calendar 215
open(String) - of javax.microedition.io.Connector 258
open(String, int) - of javax.microedition.io.Connector 259
open(String, int, boolean) - of javax.microedition.io.Connector 259
openDataInputStream() - of javax.microedition.io.InputConnection 271
openDataInputStream(String) - of javax.microedition.io.Connector 259
openDataOutputStream() - of javax.microedition.io.OutputConnection 273
openDataOutputStream(String) - of javax.microedition.io.Connector 260
openInputStream() - of javax.microedition.io.InputConnection 271
openInputStream(String) - of javax.microedition.io.Connector 260
openOutputStream() - of javax.microedition.io.OutputConnection 273
openOutputStream(String) - of javax.microedition.io.Connector 260
out - of java.io.DataOutputStream 38
out - of java.lang.System 196
OutOfMemoryError - of java.lang 153
OutOfMemoryError() - of java.lang.OutOfMemoryError 153
OutOfMemoryError(String) - of java.lang.OutOfMemoryError 154
OutputConnection - of javax.microedition.io 273
OutputStream - of java.io 56
OutputStream() - of java.io.OutputStream 57
OutputStreamWriter - of java.io 59
OutputStreamWriter(OutputStream) - of java.io.OutputStreamWriter 60
OutputStreamWriter(OutputStream, String) - of java.io.OutputStreamWriter 60
parseByte(String) - of java.lang.Byte 93
parseByte(String, int) - of java.lang.Byte 93
parseInt(String) - of java.lang.Integer 126
parseInt(String, int) - of java.lang.Integer 127
parseLong(String) - of java.lang.Long 135
parseLong(String, int) - of java.lang.Long 135
parseShort(String) - of java.lang.Short 163
parseShort(String, int) - of java.lang.Short 164
peek() - of java.util.Stack 238
PM - of java.util.Calendar 215
pop() - of java.util.Stack 238
pos - of java.io.ByteArrayInputStream 10
print(boolean) - of java.io.PrintStream 64
print(char) - of java.io.PrintStream 64
print(char[]) - of java.io.PrintStream 64
print(int) - of java.io.PrintStream 64
print(long) - of java.io.PrintStream 65
print(Object) - of java.io.PrintStream 65
println(String) - of java.io.PrintStream 66
println() - of java.io.PrintStream 65
println(boolean) - of java.io.PrintStream 65
println(char) - of java.io.PrintStream 66
println(char[]) - of java.io.PrintStream 66
println(int) - of java.io.PrintStream 66
println(long) - of java.io.PrintStream 66
println(Object) - of java.io.PrintStream 66
println(String) - of java.io.PrintStream 66
printStackTrace() - of java.lang.Throwable 205
PrintStream - of java.io 62
PrintStream(OutputStream) - of java.io.PrintStream 63
push(Object) - of java.util.Stack 239
put(Object, Object) - of java.util.Hashtable 230

R

Random - of java.util 234
Random() - of java.util.Random 235
Random(long) - of java.util.Random 235
READ - of javax.microedition.io.Connector 258
read() - of java.io.ByteArrayInputStream 12
read() - of java.io.DataInputStream 26
read() - of java.io.InputStream 46
read() - of java.io.InputStreamReader 51
read() - of java.io.Reader 70
read(byte[]) - of java.io.DataInputStream 27
read(byte[]) - of java.io.InputStream 46
read(byte[], int, int) - of java.io.ByteArrayInputStream 12
read(byte[], int, int) - of java.io.DataInputStream 27
read(byte[], int, int) - of java.io.InputStream 47
read(char[]) - of java.io.Reader 70
read(char[], int, int) - of java.io.InputStreamReader 51
read(char[], int, int) - of java.io.Reader 70
READ_WRITE - of javax.microedition.io.Connector 258
readBoolean() - of java.io.DataInput 19
readBoolean() - of java.io.DataInputStream 27
readByte() - of java.io.DataInput 19
readByte() - of java.io.DataInputStream 28
readChar() - of java.io.DataInput 19
readChar() - of java.io.DataInputStream 28
readFully(byte[]) - of java.io.DataInput 19
readFully(byte[]) - of java.io.DataInputStream 28
readFully(byte[], int, int) - of java.io.DataInput 20
readFully(byte[], int, int) - of java.io.DataInputStream 28
readInt() - of java.io.DataInput 20
readInt() - of java.io.DataInputStream 29
readLong() - of java.io.DataInput 20
readLong() - of java.io.DataInputStream 29
readShort() - of java.io.DataInput 21
readShort() - of java.io.DataInputStream 29
readUnsignedByte() - of java.io.DataInput 21
Index

readUnsignedByte() - of java.io.DataInputStream 29
readUnsignedShort() - of java.io.DataInputStream 30
readUTF() - of java.io.DataInput 22
readUTF(DataInputStream) - of java.io.DataInputStream 30
ready() - of java.io.InputStreamReader 51
ready() - of java.io.Reader 71
receive(Datagram) - of javax.microedition.io.DatagramConnection 270
regionMatches(boolean, int, String, int, int) - of java.lang.String 175
rehash() - of java.util.Hashtable 230
remove( Object ) - of java.util.Hashtable 231
removeAllElements() - of java.util.Vector 249
removeElement( Object ) - of java.util.Vector 249
removeElementAt(int) - of java.util.Vector 249
replace(char, char) - of java.lang.String 176
reset() - of java.io.ByteArrayInputStream 12
reset() - of java.io.ByteArrayOutputStream 16
reset() - of java.io.DataInputStream 31
reset() - of java.io.InputStream 47
reset() - of java.io.InputStreamReader 51
reset() - of java.io.Reader 71
reset() - of javax.microedition.io.Datagram 265
reverse() - of java.lang.StringBuffer 190
run() - of java.lang.Runnable 155
run() - of java.lang.Thread 202
Runnable - of java.lang 155
RuntimeException - of java.lang 158
RuntimeException() - of java.lang.RuntimeException 159
RuntimeException(String) - of java.lang.RuntimeException 159

S

SATURDAY - of java.util.Calendar 215
search(Object) - of java.util.Stack 239
SECOND - of java.util.Calendar 215
SecurityException - of java.lang 160
SecurityException() - of java.lang.SecurityException 160
SecurityException(String) - of java.lang.SecurityException 161
send(Datagram) - of javax.microedition.io.DatagramConnection 270
SEPTEMBER - of java.util.Calendar 215
set(int, int) - of java.util.Calendar 218
setAddress(Datagram) - of javax.microedition.io.Datagram 265
setAddress(String) - of javax.microedition.io.Datagram 265
setCharAt(int, char) - of java.lang.StringBuffer 191
setData(byte[], int, int) - of javax.microedition.io.Datagram 265
setElementAt( Object, int ) - of java.util.Vector 250
setError() - of java.io.PrintStream 67
setLength(int) - of java.lang.StringBuffer 191

287
setLength(int) - of javax.microedition.io.Datagram 266
setPriority(int) - of java.lang.Thread 202
setSeed(long) - of java.util.Random 236
setSize(int) - of java.util.Vector 250
setTime(Date) - of java.util.Calendar 218
setTime(long) - of java.util.Date 222
setTimeInMillis(long) - of java.util.Calendar 218
setTimeZone(TimeZone) - of java.util.Calendar 218
Short - of java.lang 162
Short(short) - of java.lang.Short 163
shortValue() - of java.lang.Integer 127
shortValue() - of java.lang.Short 164
size() - of java.io.ByteArrayOutputStream 16
size() - of java.util.Hashtable 231
size() - of java.util.Vector 250
skip(long) - of java.io.ByteArrayInputStream 13
skip(long) - of java.io.DataInputStream 31
skip(long) - of java.io.InputStream 48
skip(long) - of java.io.InputStreamReader 51
skip(long) - of java.io.Reader 71
skipBytes(int) - of java.io.DataInput 23
skipBytes(int) - of java.io.DataInputStream 31
sleep(long) - of java.lang.Thread 203
Stack - of java.util 237
Stack() - of java.util.Stack 238
start() - of java.lang.Thread 203
startsWith(String) - of java.lang.String 176
startsWith(String, int) - of java.lang.String 176
StreamConnection - of javax.microedition.io 275
StreamConnectionNotifier - of javax.microedition.io 276
String - of java.lang 165
String() - of java.lang.String 167
String(byte[]) - of java.lang.String 167
String(byte[], int, int) - of java.lang.String 167
String(byte[], int, int, String) - of java.lang.String 168
String(byte[], String) - of java.lang.String 168
String(char[]) - of java.lang.String 168
String(char[], int, int) - of java.lang.String 169
String(String) - of java.lang.String 169
String(StringBuffer) - of java.lang.String 169
StringBuilder - of java.lang 181
StringBuilder() - of java.lang.StringBuilder 183
StringBuilder(int) - of java.lang.StringBuilder 183
StringBuilder(String) - of java.lang.StringBuilder 183
StringIndexOutOfBoundsException - of java.lang 193
StringIndexOutOfBoundsException() - of java.lang.StringIndexOutOfBoundsException 194
StringIndexOutOfBoundsException(int) - of java.lang.StringIndexOutOfBoundsException 194
StringIndexOutOfBoundsException(String) - of java.lang.StringIndexOutOfBoundsException 194
substring(int) - of java.lang.String 177
substring(int, int) - of java.lang.String 177
SUNDAY - of java.util.Calendar 215
System - of java.lang 195

T
Thread - of java.lang 199
Thread() - of java.lang.Thread 201
Thread(Runnable) - of java.lang.Thread 201
Throwable - of java.lang 204
Throwable() - of java.lang.Throwable 205
Throwable(String) - of java.lang.Throwable 205
THURSDAY - of java.util.Calendar 215
TimeZone - of java.util 240
TimeZone() - of java.util.TimeZone 241
toBinaryString(int) - of java.lang.Integer 127
toByteArray() - of java.io.ByteArrayOutputStream 16
toCharArray() - of java.lang.String 177
toHexString(int) - of java.lang.Integer 128
toLowerCase() - of java.lang.String 178
toLowerCase(char) - of java.lang.Character 97
toOctalString(int) - of java.lang.Integer 128
toString() - of java.io.ByteArrayOutputStream 16
toString() - of java.lang.Boolean 90
toString() - of java.lang.Byte 93
toString() - of java.lang.Character 97
toString() - of java.lang.Class 102
toString() - of java.lang.Integer 129
toString() - of java.lang.Long 136
toString() - of java.lang.Object 150
toString() - of java.lang.Short 164
toString() - of java.lang.String 178
toString() - of java.lang.StringBuffer 191
toString() - of java.lang.Thread 203
toString() - of java.lang.Throwable 206
toString() - of java.util.Hashtable 231
toString() - of java.util.Vector 250
toString(int) - of java.lang.Integer 129
toString(int, int) - of java.lang.Integer 129
toString(long) - of java.lang.Long 136
toString(long, int) - of java.lang.Long 136
totalMemory() - of java.lang.Runtime 157
toUpperCase() - of java.lang.String 178
toUpperCase(char) - of java.lang.Character 98
trim() - of java.lang.String 178
trimToSize() - of java.util.Vector 250
TUESDAY - of java.util.Calendar 215

U
UnsupportedEncodingException - of java.io 72
<table>
<thead>
<tr>
<th>Method Name</th>
<th>Class Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsupportedEncodingException()</td>
<td>java.io.UnsupportedEncodingException</td>
</tr>
<tr>
<td>unsupportedEncodingException(String)</td>
<td>java.io.UnsupportedEncodingException</td>
</tr>
<tr>
<td>useDaylightTime()</td>
<td>java.util.TimeZone</td>
</tr>
<tr>
<td>UTFDataFormatException</td>
<td>java.io.UTFDataFormatException</td>
</tr>
<tr>
<td>UTFDataFormatException()</td>
<td>java.io.UTFDataFormatException</td>
</tr>
<tr>
<td>UTFDataFormatException(String)</td>
<td>java.io.UTFDataFormatException</td>
</tr>
<tr>
<td>valueOf(boolean)</td>
<td>java.lang.String</td>
</tr>
<tr>
<td>valueOf(char)</td>
<td>java.lang.String</td>
</tr>
<tr>
<td>valueOf(char[])</td>
<td>java.lang.String</td>
</tr>
<tr>
<td>valueOf(char[], int, int)</td>
<td>java.lang.String</td>
</tr>
<tr>
<td>valueOf(int)</td>
<td>java.lang.String</td>
</tr>
<tr>
<td>valueOf(long)</td>
<td>java.lang.String</td>
</tr>
<tr>
<td>valueOf(Object)</td>
<td>java.lang.String</td>
</tr>
<tr>
<td>valueOf(String)</td>
<td>java.lang.String</td>
</tr>
<tr>
<td>Vector()</td>
<td>java.util.Vector</td>
</tr>
<tr>
<td>Vector(int)</td>
<td>java.util.Vector</td>
</tr>
<tr>
<td>Vector(int, int)</td>
<td>java.util.Vector</td>
</tr>
<tr>
<td>VirtualMachineError</td>
<td>java.lang.VirtualMachineError</td>
</tr>
<tr>
<td>VirtualMachineError()</td>
<td>java.lang.VirtualMachineError</td>
</tr>
<tr>
<td>VirtualMachineError(String)</td>
<td>java.lang.VirtualMachineError</td>
</tr>
<tr>
<td>wait()</td>
<td>java.lang.Object</td>
</tr>
<tr>
<td>wait(long)</td>
<td>java.lang.Object</td>
</tr>
<tr>
<td>wait(long, int)</td>
<td>java.lang.Object</td>
</tr>
<tr>
<td>WEDNESDAY</td>
<td>java.util.Calendar</td>
</tr>
<tr>
<td>WRITE</td>
<td>javax.microedition.io.Connector</td>
</tr>
<tr>
<td>write(byte[])</td>
<td>java.io.DataOutput</td>
</tr>
<tr>
<td>write(byte[])</td>
<td>java.io.OutputStream</td>
</tr>
<tr>
<td>write(byte[], int, int)</td>
<td>java.io.ByteArrayOutputStream</td>
</tr>
<tr>
<td>write(byte[], int, int)</td>
<td>java.io.DataOutput</td>
</tr>
<tr>
<td>write(byte[], int, int)</td>
<td>java.io.DataOutputStream</td>
</tr>
<tr>
<td>write(byte[], int, int)</td>
<td>java.io.OutputStream</td>
</tr>
<tr>
<td>write(char[])</td>
<td>java.io.Writer</td>
</tr>
<tr>
<td>write(char[], int, int)</td>
<td>java.io.OutputStreamWriter</td>
</tr>
<tr>
<td>write(char[], int, int)</td>
<td>java.io.Writer</td>
</tr>
<tr>
<td>write(int)</td>
<td>java.io.ByteArrayOutputStream</td>
</tr>
<tr>
<td>write(int)</td>
<td>java.io.DataOutput</td>
</tr>
<tr>
<td>write(int)</td>
<td>java.io.DataOutputStream</td>
</tr>
<tr>
<td>write(int)</td>
<td>java.io.OutputStream</td>
</tr>
<tr>
<td>write(int)</td>
<td>java.io.OutputStreamWriter</td>
</tr>
<tr>
<td>write(int)</td>
<td>java.io.Writer</td>
</tr>
</tbody>
</table>
Index

write(String) - of java.io.Writer 78
write(String, int, int) - of java.io.OutputStreamWriter 61
write(String, int, int) - of java.io.Writer 79
writeBoolean(boolean) - of java.io.DataOutput 33
writeBoolean(boolean) - of java.io.DataOutputStream 39
writeByte(int) - of java.io.DataOutput 33
writeByte(int) - of java.io.DataOutputStream 40
writeChar(int) - of java.io.DataOutput 34
writeChar(int) - of java.io.DataOutputStream 40
writeChars(String) - of java.io.DataOutput 34
writeChars(String) - of java.io.DataOutputStream 40
writeInt(int) - of java.io.DataOutput 34
writeInt(int) - of java.io.DataOutputStream 40
writeLong(long) - of java.io.DataOutput 35
writeLong(long) - of java.io.DataOutputStream 41
Writer - of java.io 76
Writer() - of java.io.Writer 77
Writer(Object) - of java.io.Writer 77
writeShort(int) - of java.io.DataOutput 35
writeShort(int) - of java.io.DataOutputStream 41
writeUTF(String) - of java.io.DataOutput 35
writeUTF(String) - of java.io.DataOutputStream 41

Y

YEAR - of java.util.Calendar 216
yield() - of java.lang.Thread 203